IJMEB_2024v14n4

International Journal of Molecular Evolution and Biodiversity 2024, Vol.14, No.4, 174-185 http://ecoevopublisher.com/index.php/ijmeb 184 Haug J., and Haug C., 2019, Beetle larvae with unusually large terminal ends and a fossil that beats them all (Scraptiidae, Coleoptera), PeerJ, 7. https://doi.org/10.7717/peerj.7871 PMid:31632854 PMCid:PMC6796959 Hsiao Y., Li Y., Ren D., and Pang H., 2021, Morphological phylogenetics provide new insights into the classification and evolution of fossil soldier beetles from mid-Cretaceous Burmese amber (Coleoptera: Cantharidae), Zoological Journal of the Linnean Society. https://doi.org/10.1093/zoolinnean/zlaa184 Jałoszyński P., Luo X., Hammel J., Yamamoto S., and Beutel R., 2020, The mid-Cretaceous †Lepiceratus Gen. nov. and the evolution of the relict beetle family Lepiceridae (Insecta: Coleoptera: Myxophaga), Journal of Systematic Palaeontology, 18: 1127-1140. https://doi.org/10.1080/14772019.2020.1747561 Kawano K., 2020, Differentiation of developmental plasticity as a major cause of morphological evolution in stag beetles (Coleoptera: Lucanidae),Biological Journal of the Linnean Society. https://doi.org/10.1093/biolinnean/blaa004 Kundrata R., Bukejs A., Prosvirov A., and Hoffmannova J., 2020, X-ray micro-computed tomography reveals a unique morphology in a new click-beetle (Coleoptera, Elateridae) from the Eocene Baltic amber, Scientific Reports, 10. https://doi.org/10.1038/s41598-020-76908-3 PMid:33214585 PMCid:PMC7677381 Kundrata R., Packova G., Prosvirov A., and Hoffmannova J., 2021, The fossil record of Elateridae (Coleoptera: Elateroidea): described species, current problems and future prospects, Insects, 12. https://doi.org/10.3390/insects12040286 PMid:33805978 PMCid:PMC8064311 Kusy D., Motyka M., Bocek M., Mášek M., and Bocak L., 2019, Phylogenomic analysis resolves the relationships among net‐winged beetles (Coleoptera: Lycidae) and reveals the parallel evolution of morphological traits, Systematic Entomology, 44. https://doi.org/10.1111/syen.12363 Lim C., Kang J., Park S., Seok S., Bayartogtokh B., and Bae Y., 2020, Morphometric analysis of dung beetle (Gymnopleurus mopsus: Scarabaeidae: Coleoptera) populations from two different biomes in Mongolia, Biological Journal of The Linnean Society, 131: 369-383. https://doi.org/10.1093/biolinnean/blaa110 Linz D., Hara Y., Deem K., Kuraku S., Hayashi S., and Tomoyasu Y., 2023, Transcriptomic exploration of the Coleopteran wings reveals insight into the evolution of novel structures associated with the beetle elytron, Journal of Experimental Zoology, Part B, Molecular and Developmental Evolution. https://doi.org/10.1002/jez.b.23188 PMid:36617687 PMCid:PMC10107685 Lu Y., Ahrens D., Shih C., Shaw J., Yang X., Ren D., and Bai M., 2023, A Cretaceous chafer beetle (Coleoptera: Scarabaeidae) with exaggerated hind legs - insight from comparative functional morphology into a possible spring movement, Biology, 12. https://doi.org/10.3390/biology12020237 PMid:36829514 PMCid:PMC9953289 Mckenna D., Shin S., Ahrens D., Balke M., Beza-Beza C., Clarke D., Donath A., Escalona H., Friedrich F., Letsch H., Liu S., Maddison D., Mayer C., Misof B., Murin P., Niehuis O., Peters R., Podsiadlowski L., Pohl H., Scully E., Yan E., Zhou X., Ślipiński A., and Beutel R., 2019, The evolution and genomic basis of beetle diversity, Proceedings of the National Academy of Sciences of the United States of America, 116: 24729-24737. https://doi.org/10.1073/pnas.1909655116 PMid:31740605 PMCid:PMC6900523 Mckenna D., Wild A., Kanda K., Bellamy C., Beutel R., Caterino M., Farnum C., Hawks D., Ivie M., Jameson M., Leschen R., Marvaldi A., McHugh J., Newton A., Robertson J., Thayer M., Whiting M., Lawrence J., Ślipiński A., Maddison D., and Farrell B., 2015, The beetle tree of life reveals that Coleoptera survived end‐Permian mass extinction to diversify during the Cretaceous terrestrial revolution, Systematic Entomology, 40. https://doi.org/10.1111/syen.12132 Okada K., and Miyatake T., 2009, Genetic correlations between weapons, body shape and fighting behaviour in the horned beetle Gnatocerus cornutus, Animal Behaviour, 77: 1057-1065. https://doi.org/10.1016/j.anbehav.2009.01.008 Pilotto F., Rojas A., and Buckland P., 2022, Late Holocene anthropogenic landscape change in northwestern Europe impacted insect biodiversity as much as climate change did after the last Ice Age, Proceedings of the Royal Society B: Biological Sciences, 289. https://doi.org/10.1098/rspb.2021.2734 PMid:35730155 PMCid:PMC9233931 Qvarnström M., Fikáček M., Wernström J., Huld S., Beutel R., Arriaga-Varela E., Ahlberg P., and Niedźwiedzki G., 2021, Exceptionally preserved beetles in a Triassic coprolite of putative dinosauriform origin, Current Biology, 31: 3374-3381.e5. https://doi.org/10.1016/j.cub.2021.05.015 PMid:34197727 Ravisankar P., Lai Y., Sambrani N., and Tomoyasu Y., 2016, Comparative developmental analysis of Drosophila and Triboliumreveals conserved and diverged roles of abrupt in insect wing evolution, Developmental Biology, 409(2), 518-529. https://doi.org/10.1016/j.ydbio.2015.12.006 PMid:26687509

RkJQdWJsaXNoZXIy MjQ4ODYzNA==