Triticeae Genomics and Genetics, 2025, Vol.16, No.6, 262-268 http://cropscipublisher.com/index.php/tgg 268 Li J., Jiao Z., He R., Sun Y., Xu Q., Zhang J., Jiang Y., Li Q., and Niu J., 2019, Gene expression profiles and microRNA regulation networks in tiller primordia stem tips and young spikes of wheat Guomai 301, Genes, 10(9): 686. https://doi.org/10.3390/genes10090686 Li Y., Li L., Zhao M., Guo L., Guo X., Zhao D., Batool A., Dong B., Xu H., Cui S., Zhang A., Fu X., Li J., Jing R., and Liu X., 2020, Wheat frizzy panicle activates Vernalization1‐A and Homeobox4‐A to regulate spike development in wheat, Plant Biotechnology Journal, 19: 1141-1154. https://doi.org/10.1111/pbi.13535 Li Z., Hu Y., Ma X., Da L., She J., Liu Y., Yi X., Cao Y., Xu W., Jiao Y., and Su Z., 2022, WheatCENet: a database for comparative co-expression networks analysis of allohexaploid wheat and its progenitors, Genomics Proteomics and Bioinformatics, 21: 324-336. https://doi.org/10.1016/j.gpb.2022.04.007 Lin X., Xu Y., Wang D., Yang Y., Zhang X., Bie X., Gui L., Chen Z., Ding Y., Mao L., Zhang X., Lu F., Zhang X., Uauy C., Fu X., and Xiao J., 2024, Systemic identification of wheat spike development regulators by integrated multi-omics transcriptional network GWAS and genetic analyses, Molecular Plant, 17(3): 438-459. https://doi.org/10.1016/j.molp.2024.01.010 Liu P., Xue S., Jia J., Zhao G., Liu J., Hu Y., Kong C., Yan D., Wang H., Liu X., Lu Z., and Gao L., 2025, The wheat transcription factor Q functions in gibberellin biosynthesis and signaling and regulates height and spike length, The Plant Cell, 37(8): koaf183. https://doi.org/10.1093/plcell/koaf183 Morabito S., Reese F., Rahimzadeh N., Miyoshi E., and Swarup V., 2023, hdWGCNA identifies co-expression networks in high-dimensional transcriptomics data, Cell Reports Methods, 3(6): 100498. https://doi.org/10.1016/j.crmeth.2023.100498 Ruan J., Dean A., and Zhang W., 2010, A general co-expression network-based approach to gene expression analysis: comparison and applications, BMC Systems Biology, 4: 8. https://doi.org/10.1186/1752-0509-4-8 Tan B., Xie Y., Peng H., Wang M., Zhu W., Xu L., Cheng Y., Wang Y., Zeng J., Fan X., Sha L., Zhang H., Qin P., Zhou Y., Wu D., Li Y., and Kang H., 2025, Transcriptome profiling of spike development reveals key genes and pathways associated with early heading in wheat–Psathyrstachys huashanica 7Ns chromosome addition line, Plants, 14(13): 2077. https://doi.org/10.3390/plants14132077 VanGessel C., Hamilton J., Tabbita F., Dubcovsky J., and Pearce S., 2022, Transcriptional signatures of wheat inflorescence development, Scientific Reports, 12: 17224. https://doi.org/10.1038/s41598-022-21571-z Wang Y., Yu H., Tian C., Sajjad M., Gao C., Tong Y., Wang X., and Jiao Y., 2017, Transcriptome association identifies regulators of wheat spike architecture1, Plant Physiology, 175: 746-757. https://doi.org/10.1104/pp.17.00694 Wei J., Fang Y., Jiang H., Wu X., Zuo J., Xia X., Li J., Stich B., Cao H., and Liu Y., 2022, Combining QTL mapping and gene co-expression network analysis for prediction of candidate genes and molecular network related to yield in wheat, BMC Plant Biology, 22: 127. https://doi.org/10.1186/s12870-022-03677-8 Xu X., Lin H., Zhang J., Burguener G., Paraiso F., Tumelty C., Li C., Liu Y., and Dubcovsky J., 2025, Spatial and single-cell expression analyses reveal complex expression domains in early wheat spike development, bioRxiv, 26(1): 352. https://doi.org/10.1101/2025.02.15.638402 Yang G., Pan Y., Cui L., Chen M., Zeng Q., Pan W., Liang Z., Edwards D., Batley J., Han D., Deng P., Yu H., Henry R., Weining S., and Nie X., 2023, Genetic basis of expression and splicing underlying spike architecture in wheat (Triticum aestivumL.), bioRxiv, 2023: 05. https://doi.org/10.1101/2023.05.04.539218 Yang Z., Bai W., Guo G., Huang S., Wang Y., Zhou Y., Zhang Y., and Sun J., 2025, The Q-interacted protein QIP3 recruits TaTPL to regulate spike architecture in wheat., The Plant Journal, 122(2): e70149. https://doi.org/10.1111/tpj.70149 Zhang T., and Wong G., 2022, Gene expression data analysis using Hellinger correlation in weighted gene co-expression networks (WGCNA), Computational and Structural Biotechnology Journal, 20: 3851-3863. https://doi.org/10.1016/j.csbj.2022.07.018 Zhu S.J., and Wang W., 2025, Functional validation of maize phosphate transporters using overexpression lines, Maize Genomics and Genetics, 16(4): 219-228. https://doi.org/10.5376/mgg.2025.16.0019
RkJQdWJsaXNoZXIy MjQ4ODYzNA==