TGG_2025v16n6

Triticeae Genomics and Genetics, 2025, Vol.16, No.6, 254-261 http://cropscipublisher.com/index.php/tgg 260 He J., Zhao X., Laroche A., Lu Z., Liu H., and Li Z., 2014, Genotyping-by-sequencing (GBS) an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding, Frontiers in Plant Science, 5: 484. https://doi.org/10.3389/fpls.2014.00484 Huang D.D., and Wang H.M., 2025, Genomic Strategies for disease resistance breeding in sugarcane: identification of resistance genes, transcriptomic analysis, and molecular markerst, Bioscience Methods, 16(3): 108-116. https://doi.org/10.5376/bm.2025.16.0011 Jarosh A., and Relina L., 2022, Winter rye collection of the National Center of plant genetic resources of Ukraine as a basis for the creation of selection valuable and stable genotypes, Visnyk Agrarnoi Nauky, 9: 834. https://doi.org/10.31073/agrovisnyk202209-07 Kantarek Z., Masojć P., Bienias A., and Milczarski P., 2018, Identification of a novel dominant dwarfing gene (Ddw4) and its effect on morphological traits of rye, PLoS ONE, 13 (6): e0199335. https://doi.org/10.1371/journal.pone.0199335 Kostrzewska M., and Jastrzębska M., 2025, Hybrid cultivar and crop protection to support winter rye yield in continuous cropping, Agriculture, 15 (13): 1368. https://doi.org/10.3390/agriculture15131368 Kumar A., Sandhu N., Dixit S., Yadav S., Swamy B., Shamsudin N., and Shamsudin N., 2018, Marker-assisted selection strategy to pyramid two or more QTLs for quantitative trait-grain yield under drought, Rice, 11(1): 22. https://doi.org/10.1186/s12284-018-0227-0 Li Q., Fu C., Liang C., Ni X., Zhao X., Chen M., and Ou L., 2022, Crop lodging and the roles of lignin cellulose and hemicellulose in lodging resistance, Agronomy, 11(1): 22. https://doi.org/10.3390/agronomy12081795 Litvinov D., Chernook A., Kroupin P., Bazhenov M., Karlov G., Avdeev S., and Divashuk M., 2020, A convenient co-dominant marker for height-reducing Ddw1 allele useful for marker-assisted selection, Agriculture, 10(4): 110. https://doi.org/10.3390/agriculture10040110 Long W., Dan D., Yuan Z., Chen Y., Jin J., Yang W., Zhang Z., Li N., and Li S., 2020, Deciphering the genetic basis of lodging resistance in wild rice Oryza longistaminata, Frontiers in Plant Science, 11: 628. https://doi.org/10.3389/fpls.2020.00628 Mapari A., and Mehandi S., 2024, Enhancing crop resilience: advances and challenges in marker-assisted selection for disease resistance, Journal of Advances in Biology and Biotechnology, 27(7): 569-580. https://doi.org/10.9734/jabb/2024/v27i71018 Misra A., and Singh R., 2025, Marker assisted selection for crop improvement : a review, Plant Cell Biotechnology and Molecular Biology, 26(1): 17-37. https://doi.org/10.56557/pcbmb/2025/v26i1-29130 Muszynska A., Guendel A., Melzer M., Moya Y., Röder M., Rolletschek H., Rutten T., Munz E., Melz G., Ortleb S., Borisjuk L., and Börner A., 2021, A mechanistic view on lodging resistance in rye and wheat: a multiscale comparative study, Plant Biotechnology Journal, 19: 2646-2661. https://doi.org/10.1111/pbi.13689 Nabatova N., Parfenova E., Utkina E., Shamova M., Psareva E., and Zhukova M., 2022, Morphological and agronomic characteristics of winter rye cultivars in connection with their resistance to lodging, Proceedings on Applied Botany Genetics and Breeding, 183(4): 73-87. https://doi.org/10.30901/2227-8834-2022-4-73-87 Niu Y., Chen T., Zhao C., and Zhou M., 2022, Lodging prevention in cereals: morphological biochemical anatomical traits and their molecular mechanisms management and breeding strategies, Field Crops Research, 289: 108733. https://doi.org/10.1016/j.fcr.2022.108733 Rabieyan E., Darvishzadeh R., and Alipour H., 2024, Genetic analyses and prediction for lodging‑related traits in a diverse Iranian hexaploid wheat collection, Scientific Reports, 14(1): 1-22. https://doi.org/10.1038/s41598-023-49927-z Wang Y., Mette M., Miedaner T., Gottwald M., Wilde P., Reif J., and Zhao Y., 2014, The accuracy of prediction of genomic selection in elite hybrid rye populations surpasses the accuracy of marker-assisted selection and is equally augmented by multiple field evaluation locations and test years, BMC Genomics, 15 (1): 556. https://doi.org/10.1186/1471-2164-15-556 Wei L., Jian H., Lu K., Yin N., Wang J., Duan X., Liu L., Xu X., Wang R., Paterson A., and Li J., 2017, Genetic and transcriptomic analyses of lignin- and lodging-related traits in Brassica napus, Theoretical and Applied Genetics, 130: 1961-1973. https://doi.org/10.1007/s00122-017-2937-x Yang X., Lai Y., Wang L., Zhao M., Wang J., Li M., Chi L., Lv G., Liu Y., Cui Z., Li R., Sun B., Zhang X., and Jiang S., 2023, Isolation of a novel QTL qSCM4 associated with strong culm affects lodging resistance and panicle branch number in rice, International Journal of Molecular Sciences, 24(1): 812. https://doi.org/10.3390/ijms24010812 Zhang A., Zhao T., Hu X., Zhou Y., An Y., Pei H., Sun D., Sun G., Li C., and Ren X., 2022, Identification of QTL underlying the main stem related traits in a doubled haploid barley population, Frontiers in Plant Science, 13: 1063988. https://doi.org/10.3389/fpls.2022.1063988 Zhang X., Yang P.P., and Zhang J., 2025, High-throughput genotyping and its role in accelerating cotton breeding, Cotton Genomics and Genetics, 16(5): 249-258.

RkJQdWJsaXNoZXIy MjQ4ODYzNA==