Triticeae Genomics and Genetics, 2025, Vol.16, No.6, 237-244 http://cropscipublisher.com/index.php/tgg 252 Liu S., Li K., Dai X., Qin G., Lu D., Gao Z., Li X., Song B., Bian J., Ren D., Liu Y., Chen X., Xu Y., Liu W., Yang C., Liu X., Chen S., Li J., Li B., He H., and Deng X., 2025, A telomere-to-telomere genome assembly coupled with multi-omic data provides insights into the evolution of hexaploid bread wheat, Nature Genetics, 57: 1008-1020. https://doi.org/10.1038/s41588-025-02137-x Luo M.T., 2025, Phylogenetic analysis of sugarcane for sugar production: population structure and adaptive evolution based on whole-genome data, Journal of Energy Bioscience, 16(1): 13-20. https://doi.org/10.5376/jeb.2025.16.0002 Lv R., Gou X., Li N., Zhang Z., Wang C., Wang R., Wang B., Yang C., Gong L., Zhang H., and Liu B., 2023, Chromosome translocation affects multiple phenotypes causes genome-wide dysregulation of gene expression and remodels metabolome in hexaploid wheat, The Plant Journal, 106(4): 1059-1078. https://doi.org/10.1111/tpj.16338 Mitsuhashi S., Ohori S., Katoh K., Frith M., and Matsumoto N., 2020, A pipeline for complete characterization of complex germline rearrangements from long DNA reads, Genome Medicine, 12: 28. https://doi.org/10.1186/s13073-020-00762-1 Pellestor F., 2019, Chromoanagenesis: cataclysms behind complex chromosomal rearrangements, Molecular Cytogenetics, 115: 4-15. https://doi.org/10.1186/s13039-019-0415-7 Pellestor F., Gaillard J., Schneider A., Puechberty J., and Gatinois V., 2021, Chromoanagenesis the mechanisms of a genomic chaos, Seminars in Cell and Developmental Biology, 115: 4-15. https://doi.org/10.1016/j.semcdb.2021.01.004 Qu J., Li S., and Yu D., 2023, Detection of complex chromosome rearrangements using optical genome mapping, Gene, 897: 147688. https://doi.org/10.1016/j.gene.2023.147688 Salina E., Muterko A., Kiseleva A., Liu Z., and Korol A., 2022, Dissection of structural reorganization of wheat 5B chromosome associated with interspecies recombination suppression, Frontiers in Plant Science, 13: 884632. https://doi.org/10.3389/fpls.2022.884632 Shi P., Sun H., Liu G., Zhang X., Zhou J., Song R., Xiao J., Yuan C., Sun L., Wang Z., Lou Q., Jiang J., Wang X., and Wang H., 2022, Chromosome painting reveals inter-chromosomal rearrangements and evolution of subgenome D of wheat, The Plant Journal, 112(1): 55-67. https://doi.org/10.1111/tpj.15926 Wang J., Zhao X., and Gao F.M., 2025, Molecular breeding strategies for pyramiding disease resistance in wheat, Triticeae Genomics and Genetics, 16(4): 184-194. https://doi.org/10.5376/tgg.2025.16.0020 Wang T., Li G., Jiang C., Zhou Y., Yang E., Li J., Zhang P., Dundas I., and Yang Z., 2023, Development of a set of wheat-rye derivative lines fromHexaploid triticale with complex chromosomal rearrangements to improve disease resistance agronomic and quality traits of wheat, Plants, 12(22): 3885. https://doi.org/10.3390/plants12223885 Xia Y., 2025, Exploration and genetic counseling of using multiple genetic techniques to detect derived chromosomes in prenatal diagnosis, Journal of Advances in Medicine Science, 8(1): 12-17. https://doi.org/10.26549/jams.v8i1.24436 Zhang S., Du P., Lu X., Fang J., Wang J., Chen X., Chen J., Wu H., Yang Y., Tsujimoto H., Chu C., and Qi Z., 2021, Frequent numerical and structural chromosome changes in early generations of synthetic hexaploid wheat, Genome, 64(4): 205-217. https://doi.org/10.1139/gen-2021-0074 Zhao J., Xie Y., Kong C., Lu Z., Jia H., Ma Z., Zhang Y., Cui D., Ru Z., Wang Y., Appels R., Jia J., and Zhang X., 2023, Centromere repositioning and shifts in wheat evolution, Plant Communications, 4(9): 100556. https://doi.org/10.1016/j.xplc.2023.100556
RkJQdWJsaXNoZXIy MjQ4ODYzNA==