TGG_2025v16n6

Triticeae Genomics and Genetics, 2025, Vol.16, No.6, 237-244 http://cropscipublisher.com/index.php/tgg 251 References Al-Zain A., Nester M., Ahmed I., and Symington L., 2023, Double-strand breaks induce inverted duplication chromosome rearrangements by a DNA polymerase δ-dependent mechanism, Nature Communications, 14: 5546. https://doi.org/10.1038/s41467-023-42640-5 Burden F., Rathje C., Ellis P., Holl J., Lewis C., and Farré M., 2025, Detecting chromosomal rearrangements in boars using Hi‐C, Animal Genetics, 56(2): 227-234. https://doi.org/10.1111/age.70009 Burssed B., Zamariolli M., Bellucco F., and Melaragno M., 2022, Mechanisms of structural chromosomal rearrangement formation, Molecular Cytogenetics, 15: 15-26. https://doi.org/10.1186/s13039-022-00600-6 Cheng H., Kong L., Zhu K., Zhao H., Li X., Zhang Y., Ning W., Jiang M., Song B., and Cheng S., 2025, Structural variation-based and gene-based pangenome construction reveals untapped diversity of hexaploid wheat, Journal of Genetics and Genomics, 52(6): 774-785. https://doi.org/10.1016/j.jgg.2025.03.015 Coombes B., Fellers J., Grewal S., Rusholme-Pilcher R., Hubbart-Edwards S., Yang C., Joynson R., King I., King J., and Hall A., 2021, Whole‐genome sequencing uncovers the structural and transcriptomic landscape of hexaploid wheat/Ambylopyrum muticum introgression lines, Plant Biotechnology Journal, 21: 482-496. https://doi.org/10.1101/2021.11.16.468825 De Oliveira R., Rimbert H., Balfourier F., Kitt J., Dynomant E., Vrána J., Doležel J., Cattonaro F., Paux E., and Choulet F., 2020, Structural variations affecting genes and transposable elements of chromosome 3B in wheats, Frontiers in Genetics, 11: 891 https://doi.org/10.3389/fgene.2020.00891 Eisfeldt J., Ameur A., Lenner F., De Boer E., Ek M., Wincent J., Vaz R., Ottosson J., Jonson T., Ivarsson S., Thunström S., Topa A., Stenberg S., Rohlin A., Sandestig A., Nordling M., Palmebäck P., Burstedt M., Nordin F., Stattin E., Sobol M., Baliakas P., Bondeson M., Höijer I., Saether K., Lovmar L., Ehrencrona H., Melin M., Feuk L., and Lindstrand A., 2024, A national long-read sequencing study on chromosomal rearrangements uncovers hidden complexities, Genome Research, 34: 1774-1784. https://doi.org/10.1101/gr.279510.124 Galbraith K., Wu J., Sikkink K., Mohamed H., Reid D., Perez-Arreola M., Belton J., Nomikou S., Melnyk S., Yang Y., Liechty B., Jour G., Tsirigos A., Hermel D., Beck A., Sigal D., Dahl N., Vibhakar R., Schmitt A., and Snuderl M., 2025, Detection of gene fusions and rearrangements in FFPE solid tumor specimens using Hi-C, The Journal of Molecular Diagnostics, 27(5): 346-359. https://doi.org/10.1016/j.jmoldx.2025.01.007 Gozashti L., Harringmeyer O., and Hoekstra H., 2025, How repeats rearrange chromosomes: the molecular basis of chromosomal inversions in deer mice, Cell Reports, 44(5): 115644. https://doi.org/10.1016/j.celrep.2025.115644 Hu Q., Maurais E., and Ly P., 2020, Cellular and genomic approaches for exploring structural chromosomal rearrangements, Chromosome Research, 28: 19-30. https://doi.org/10.1007/s10577-020-09626-1 Huo N., Zhang S., Zhu T., Dong L., Wang Y., Mohr T., Hu T., Liu Z., Dvorak J., Luo M., Wang D., Lee J., Altenbach S., and Gu Y., 2018, Gene duplication and evolution dynamics in the homeologous regions harboring multiple prolamin and resistance gene families in hexaploid wheat, Frontiers in Plant Science, 9: 673. https://doi.org/10.3389/fpls.2018.00673 Jia J., Xie Y., Cheng J., Kong C., Wang M., Gao L., Zhao F., Guo J., Wang K., Li G., Cui D., Hu T., Zhao G., Wang D., Ru Z., and Zhang Y., 2021, Homology-mediated inter-chromosomal interactions in hexaploid wheat lead to specific subgenome territories following polyploidization and introgression, Genome Biology, 22: 26. https://doi.org/10.1186/s13059-020-02225-7 Jiao C., Xie X., Hao C., Chen L., Xie Y., Garg V., Zhao L., Wang Z., Zhang Y., Li T., Fu J., Chitikineni A., Hou J., Liu H., Dwivedi G., Liu X., Jia J., Mao L., Wang X., Appels R., Varshney R., Guo W., and Zhang X., 2024, Pan-genome bridges wheat structural variations with habitat and breeding, Nature, 637(8045): 384-393. https://doi.org/10.1038/s41586-024-08277-0 Jilani M., and Haspel N., 2021, Computational methods for detecting large-scale structural rearrangements in chromosomes, Bioinformatics, 3: 45-60. https://doi.org/10.36255/exonpublications.bioinformatics.2021.ch3 Komura S., Jinno H., Sonoda T., Oono Y., Handa H., Takumi S., Yoshida K., and Kobayashi F., 2022, Genome sequencing-based coverage analyses facilitate high-resolution detection of deletions linked to phenotypes of gamma-irradiated wheat mutants, BMC Genomics, 23: 111. https://doi.org/10.1186/s12864-022-08344-8 Kot P., Yasuhara T., Shibata A., Hirakawa M., Abe Y., Yamauchi M., and Matsuda N., 2021, Mechanism of chromosome rearrangement arising from single-strand breaks., Biochemical and Biophysical Research Communications, 572: 191-196. https://doi.org/10.1016/j.bbrc.2021.08.001 Krupina K., Goginashvili A., and Cleveland D., 2023, Scrambling the genome in cancer: causes and consequences of complex chromosome rearrangements, Nature Reviews Genetics, 25: 196-210. https://doi.org/10.1038/s41576-023-00663-0

RkJQdWJsaXNoZXIy MjQ4ODYzNA==