TGG_2025v16n5

Triticeae Genomics and Genetics, 2025, Vol.16, No.5, 212-219 http://cropscipublisher.com/index.php/tgg 218 Chen X., He X., Wang W., Qu Z., and Liu Y., 2022, Study on the technologies of loss reduction in wheat mechanization harvesting: a review, Agriculture, 12(11): 1935. https://doi.org/10.3390/agriculture12111935 Das B., Hoque A., Roy S., Kumar K., Laskar A., and Mazumder A., 2025, Post-harvest technologies and automation: Al-driven innovations in food processing and supply chains, International Journal of Scientific Research in Science and Technology, 12(1): 183-205. https://doi.org/10.32628/ijsrst25121170 Deekshithulu N., Kanth B., Tejaswini V., Tejaswini V., and Thomson T., 2024, Trends and patterns of farm mechanization in India, International Journal of Advanced Biochemistry Research, 8(10): 843-856. https://doi.org/10.33545/26174693.2024.v8.i10k.2626 Drincha V., and Tsench Y., 2020, Fundamentals and prospects for the technologies development for post-harvest grain processing and seed preparation, Agricultural Machinery and Technologies, 14(4): 17-25. https://doi.org/10.22314/2073-7599-2020-14-4-17-25 Econopouly B., and Jones S., 2020, Addressing the challenges of new decentralized flour mills in alternative agriculture and food systems: a study on grain aging prior to whole wheat milling, Agroecology and Sustainable Food Systems, 44: 258-275. https://doi.org/10.1080/21683565.2019.1658687 Gebresenbet G., Bosona T., Patterson D., Persson H., Fischer B., Mandaluniz N., Chirici G., Zacepins A., Komašilovs V., Pitulac T., and Nasirahmadi A., 2023, A concept for application of integrated digital technologies to enhance future smart agricultural systems, Smart Agricultural Technology, 5: 100255. https://doi.org/10.1016/j.atech.2023.100255 Jaques L., Coradi P., Rodrigues H., Dubal Í., Padia C., Lima R., and Souza G., 2022, Post-harvesting of soybean seeds–engineering, processes technologies, and seed quality: a review, International Agrophysics, 36(2): 59-81. https://doi.org/10.31545/intagr/147422 Jotautienė E., Juostas A., and Atılgan A., 2024, Investigation on environmentally friendly wheat harvest technology, 23rd International Scientific Conference Engineering for Rural Development Proceedings, 49: 245-250. https://doi.org/10.22616/erdev.2024.23.tf049 Kheiralipour K., Brandão M., Holka M., and Choryński A., 2024, A review of environmental impacts of wheat production in different agrotechnical systems, Resources, 13(7): 93. https://doi.org/10.3390/resources13070093 Kim H., Kim Y., Kim K., Lee K., Shin S., Cheong Y., and Park K., 2012, Effect of mechanical working system on labor-saving in wheat cultivation, The Korean Journal of Crop Science, 57: 331-336. https://doi.org/10.7740/KJCS.2012.57.4.331 Li S., Zhang C., Li J., Yan L., Wang N., and Xia L., 2021, Present and future prospects for wheat improvement through genome editing and advanced technologies, Plant Communications, 2(4): 100211. https://doi.org/10.1016/j.xplc.2021.100211 Maslov G., Yudina E., and Rinas N., 2022, Technological and design principles of grain quality improvement, taking into account natural and climatic conditions, IOP Conference Series: Earth and Environmental Science, 981: 042032. https://doi.org/10.1088/1755-1315/981/4/042032 Navarro E., Costa N., and Pereira A., 2020, A systematic review of IoT solutions for smart farming, Sensors, 20(15): 4231. https://doi.org/10.3390/s20154231 Peladarinos N., Piromalis D., Cheimaras V., Tserepas E., Munteanu R., and Papageorgas P., 2023, Enhancing smart agriculture by implementing digital twins: a comprehensive review, Sensors, 23(16): 7128. https://doi.org/10.3390/s23167128 Rajaram S., 2001a, Prospects and promise of wheat breeding in the 21st century, Euphytica, 119: 3-15. https://doi.org/10.1023/A:1017538304429 Rajaram S., 2001b, Prospects and promise of wheat breeding in the 21st century, Euphytica, 9: 37-52. https://doi.org/10.1007/978-94-017-3674-9_4 Robertson M., Kirkegaard J., Rebetzke G., Llewellyn R., and Wark T., 2016, Prospects for yield improvement in the Australian wheat industry: a perspective, Food and Energy Security, 5: 107-122. https://doi.org/10.1002/FES3.81 Sarkar A., 2020, Agricultural Mechanization in India: a study on the ownership and investment in farm machinery by cultivator households across agro-ecological regions, Millennial Asia, 11(2): 160-186. https://doi.org/10.1177/0976399620925440 Schmidt D., Casagranda L., Butturi M., and Sellitto M., 2024, digital technologies, sustainability, and efficiency in grain post-harvest activities: a bibliometric analysis, Sustainability, 16(3): 1244. https://doi.org/10.3390/su16031244 Schmidt M., Zannini E., and Arendt E., 2018, Recent advances in physical post-harvest treatments for shelf-life extension of cereal crops, Foods, 7(4): 45. https://doi.org/10.3390/foods7040045 Singla K., Rawal S., Goel V., Kumar A., Bali A., and Khan A., 2025, On-Farm economic evaluation of mechanized in-situ paddy residue management in paddy-wheat cropping system of Yamunanagar, Haryana, India, Advances in Research, 26(3): 136-143. https://doi.org/10.9734/air/2025/v26i31331

RkJQdWJsaXNoZXIy MjQ4ODYzNA==