TGG_2025v16n5

Triticeae Genomics and Genetics, 2025, Vol.16, No.5, 195-202 http://cropscipublisher.com/index.php/tgg 201 Hanson E., Cossette M., and Roberts D., 2022, The adoption and usage of precision agriculture technologies in North Dakota, Technology in Society, 71: 102087. https://doi.org/10.1016/j.techsoc.2022.102087 Jain M., Singh B., Srivastava A., Malik R., McDonald A., and Lobell D., 2017, Using satellite data to identify the causes of and potential solutions for yield gaps in India’s Wheat Belt, Environmental Research Letters, 12: 094011. https://doi.org/10.1088/1748-9326/aa8228 Keil A., Mitra A., McDonald A., and Malik R., 2020, Zero-tillage wheat provides stable yield and economic benefits under diverse growing season climates in the Eastern Indo-Gangetic Plains, International Journal of Agricultural Sustainability, 18: 567-593. https://doi.org/10.1080/14735903.2020.1794490 Kendall H., Clark B., Li W., Jin S., Jones G., Chen J., Taylor J., Li Z., and Frewer L., 2021, Precision agriculture technology adoption: a qualitative study of small-scale commercial “family farms” located in the North China Plain, Precision Agriculture, 23: 319-351. https://doi.org/10.1007/s11119-021-09839-2 Kroupová Z., Aulová R., Rumankova L., Bajan B., Čechura L., Simek P., and Jarolímek J., 2024, Drivers and barriers to precision agriculture technology and digitalisation adoption: meta-analysis of decision choice models, Precision Agriculture, 26: 17. https://doi.org/10.1007/s11119-024-10213-1 Kumar S., Panwar A., Naresh R., Singh P., Mahajan N., Chowdhary U., Kumar S., Malik M., Meena A., Ghashal P., Meena L., and Chowdhary J., 2018, Improving Rice-wheat cropping system through precision nitrogen management: a review, Journal of Pharmacognosy and Phytochemistry, 7: 1119-1128. Kumar V., Saharawat Y., Gathala M., Jat A., Singh S., Chaudhary N., and Jat M., 2013, Effect of different tillage and seeding methods on energy use efficiency and productivity of wheat in the Indo-Gangetic plains, Field Crops Research, 142: 1-8. https://doi.org/10.1016/J.FCR.2012.11.013 Li Q., Bian C., Liu X., Ma C., and Liu Q., 2015, Winter wheat grain yield and water use efficiency in wide-precision planting pattern under deficit irrigation in North China Plain, Agricultural Water Management, 153: 71-76. https://doi.org/10.1016/J.AGWAT.2015.02.004 Mgendi G., 2024, Unlocking the potential of precision agriculture for sustainable farming, Discover Agriculture, 2: 87. https://doi.org/10.1007/s44279-024-00078-3 Mizik T., 2022, How can precision farming work on a small scale? A systematic literature review, Precision Agriculture, 24: 384-406. https://doi.org/10.1007/s11119-022-09934-y Ofori M., and El-Gayar O., 2020, Drivers and challenges of precision agriculture: a social media perspective, Precision Agriculture, 22: 1019-1044. https://doi.org/10.1007/s11119-020-09760-0 Park A., Davis A., and McDonald A., 2018, Priorities for wheat intensification in the Eastern Indo-Gangetic Plains, Global Food Security, 17: 1-8. https://doi.org/10.1016/J.GFS.2018.03.001 Paustian M., and Theuvsen L., 2016, Adoption of precision agriculture technologies by German crop farmers, Precision Agriculture, 18: 701-716. https://doi.org/10.1007/s11119-016-9482-5 Pooniya V., Jat S., Choudhary A., Singh A., Parihar C., Bana R., Swarnalakshmi K., and Rana K., 2015, Nutrient Expert assisted site-specific-nutrient-management: an alternative precision fertilization technology for maize-wheat cropping system in South-Asian Indo-Gangetic Plains, The Indian Journal of Agricultural Sciences, 85(8): 996-1002. https://doi.org/10.56093/ijas.v85i8.50796 Rebouh N., Mohamed E., Polityko P., Dokukin P., Kucher D., Latati M., Okeke S., and Ali M., 2023, Towards improving the precision agriculture management of the wheat crop using remote sensing: a case study in Central Non-Black Earth region of Russia, The Egyptian Journal of Remote Sensing and Space Science, 26(3): 505-517. https://doi.org/10.1016/j.ejrs.2023.06.007 Rupnik R., Kukar M., Vračar P., Kosir D., Pevec D., and Bosnić Z., 2019, AgroDSS: a decision support system for agriculture and farming, Computers and Electronics in Agriculture, 161: 260-271. https://doi.org/10.1016/J.COMPAG.2018.04.001 Sadhukhan R., Kumar D., Sepat S., Ghosh A., Banerjee K., Shivay Y., Gawdiya S., Harish M., Bhatia A., Kumawat A., Dutta S., Biswakarma N., Sharma L., Patra K., and Bhupenchandra I., 2024, Precision nutrient management influences the productivity, nutrients use efficiency, N2O fluxes and soil enzymatic activity in zero-till wheat (Triticum aestivumL.), Field Crops Research, 317: 109526. https://doi.org/10.1016/j.fcr.2024.109526 Saggi M., and Jain S., 2022, A survey towards decision support system on smart irrigation scheduling using machine learning approaches, Archives of Computational Methods in Engineering, 29: 4455-4478. https://doi.org/10.1007/s11831-022-09746-3 Shafi U., Mumtaz R., García-Nieto J., Hassan S., Zaidi S., and Iqbal N., 2019, Precision agriculture techniques and practices: from considerations to applications, Sensors, 19(17): 3796. https://doi.org/10.3390/s19173796 Sharma A., Jain A., Gupta P., and Chowdary V., 2021, Machine learning applications for precision agriculture: a comprehensive review, IEEE Access, 9: 4843-4873. https://doi.org/10.1109/ACCESS.2020.3048415

RkJQdWJsaXNoZXIy MjQ4ODYzNA==