Triticeae Genomics and Genetics, 2025, Vol.16, No.4, 184-194 http://cropscipublisher.com/index.php/tgg 193 Milne R., Dibley K., Schnippenkoetter W., Mascher M., Lui A., Wang L., Lo C., Ashton A., Ryan P., and Lagudah E., 2018, The wheat Lr67 gene from the sugar transport protein 13 family confers multipathogen resistance in barley, Plant Physiology, 179(4): 1285-1297. https://doi.org/10.1104/pp.18.00945 Mourad A., Ahmed A., Baenziger P., Börner A., and Sallam A., 2024, Broad-spectrum resistance to fungal foliar diseases in wheat: recent efforts and achievements, Frontiers in Plant Science, 15: 1516317. https://doi.org/10.3389/fpls.2024.1516317 Mulugeta T., Abate A., Tadesse W., Woldeyohannes A., Tefera N., Shiferaw W., and Tiruneh A., 2024, Multivariate analysis of phenotypic diversity elite bread wheat (Triticum aestivumL.) genotypes from ICARDA in Ethiopia, Heliyon, 10(16): e36062. https://doi.org/10.1016/j.heliyon.2024.e36062 Mundt C., 2018, Pyramiding for resistance durability: theory and practice, Phytopathology, 108(7): 792-802. https://doi.org/10.1094/PHYTO-12-17-0426-RVW Ogutu E., Madahana S., Bhavani S., and Macharia G., 2024, Genotype×environment interaction: trade-offs between the agronomic performance and stability of durum(Triticum turgidum) wheat to stem-rust resistance in Kenya, Frontiers in Plant Science, 15: 1427483. https://doi.org/10.3389/fpls.2024.1427483 Pal D., Bhardwaj S., Sharma P., Sharma D., Khan H., Harikrishna, Babu H., Jha S., Patial M., Chauhan D., Kumari S., and Prabhu K., 2020, Molecular marker aided selection for developing rust resistant genotypes by pyramiding Lr19/Sr25 and Yr15 in wheat (Triticum aestivumL.), Australasian Plant Pathology, 49: 631-640. https://doi.org/10.1007/s13313-020-00738-0 Rajput R., Misra P., Trivedi P., and Pandey A., 2022, Gene pyramiding in transgenic plant development: approaches and challenges, Journal of Plant Growth Regulation, 42: 6038-6056. https://doi.org/10.1007/s00344-022-10760-9 Ren R., Zhou X., and Feng J., 2024, Editorial: wheat disease resistance: diagnosis, germplasm mining, and molecular breeding, Frontiers in Plant Science, 15: 1500414. https://doi.org/10.3389/fpls.2024.1500414 Saintenac C., Lee W., Cambon F., Rudd J., King R., Marande W., Powers S., Bergès H., Phillips A., Uauy C., Hammond-Kosack K., Langin T., and Kanyuka K., 2018, Wheat receptor-kinase-like protein Stb6 controls gene-for-gene resistance to fungal pathogen Zymoseptoria tritici, Nature Genetics, 50: 368-374. https://doi.org/10.1038/s41588-018-0051-x Sharma A., Srivastava P., Mavi G., Kaur S., Kaur J., Bala R., Singh T., Sohu V., Chhuneja P., Bains N., and Singh G., 2021, Resurrection of wheat cultivar PBW343 using marker-assisted gene pyramiding for rust resistance, Frontiers in Plant Science, 12: 570408. https://doi.org/10.3389/fpls.2021.570408 Sivasamy M., Vikas V., Jayaprakash P., Kumar J., Saharan M., and Sharma I., 2017, Gene pyramiding for developing high-yielding disease-resistant wheat varieties, Management of Wheat and Barley Diseases, 1: 361-409. https://doi.org/10.1201/9781315207537-13 Waites J., Mohan V., Achary M., Syombua E., Hearne S., Bandyopadhyay A., Wang D., and Barone P., 2025, CRISPR-mediated genome editing of wheat for enhancing disease resistance, Frontiers in Genome Editing, 7: 1542487. https://doi.org/10.3389/fgeed.2025.1542487 Wang F., Zhang M., Hu Y., Gan M., Jiang B., Hao M., Ning S., Yuan Z., Chen X., Chen X., Zhang L., Wu B., Liu D., and Huang L., 2022, Pyramiding of adult-plant resistance genes enhances all-stage resistance to wheat stripe rust, Plant Disease, 107(3): 879-885. https://doi.org/10.1094/PDIS-07-22-1716-RE Xiao B., Qie Y., Jin Y., Yu N., Sun N., Liu W., Wang X., Wang J., Qian Z., Zhao Y., Yuan T., Li L., Wang F., Liu C., and Ma P., 2024, Genetic basis of an elite wheat cultivar Guinong 29 with harmonious improvement between multiple diseases resistance and other comprehensive traits, Scientific Reports, 14: 14336. https://doi.org/10.1038/s41598-024-64998-2 Xu Y., Li Y., Bian R., Zhang G., Fritz A., Dong Y., Zhao L., Xu Y., Ghori N., Bernardo A., St. Amand P., Rupp J., Bruce M., Wang W., Akhunov E., Carver B., and Bai G., 2023, Genetic architecture of quantitative trait loci (QTL) for FHB resistance and agronomic traits in a hard winter wheat population, The Crop Journal, 11(6): 1836-1845. https://doi.org/10.1016/j.cj.2023.09.004 Yu G., Matny O., Gourdoupis S., Rayapuram N., Aljedaani F., Wang Y., Nürnberger T., Johnson R., Crean E., Saur I., Gardener C., Yue Y., Kangara N., Steuernagel B., Hayta S., Smedley M., Harwood W., Patpour M., Wu S., Poland J., Jones J., Reuber T., Ronen M., Sharon A., Rouse M., Xu S., Holušová K., Bartoš J., Molnár I., Karafiátová M., Hirt H., Blilou I., Jaremko Ł., Doležel J., Steffenson B., and Wulff B., 2023, The wheat stem rust resistance gene Sr43 encodes an unusual protein kinase, Nature Genetics, 55: 921-926. https://doi.org/10.1038/s41588-023-01402-1 Zhang X.L., and He Z.H., 2024, Endophyte diversity in wild wheat: potential for agricultural utilization, Molecular Microbiology Research, 14(2): 99-108. https://doi.org/10.5376/mmr.2024.14.0011 Zhang J., Hewitt T., Boshoff W., Dundas I., Upadhyaya N., Li J., Patpour M., Chandramohan S., Pretorius Z., Hovmøller M., Schnippenkoetter W., Park R., Mago R., Periyannan S., Bhatt D., Hoxha S., Chakraborty S., Luo M., Dodds P., Steuernagel B., Wulff B., Ayliffe M., McIntosh R., Zhang P., and Lagudah E., 2021, A recombined Sr26 andSr61 disease resistance gene stack in wheat encodes unrelated NLRgenes, Nature Communications, 12: 3378. https://doi.org/10.1038/s41467-021-23738-0
RkJQdWJsaXNoZXIy MjQ4ODYzNA==