TGG_2025v16n4

Triticeae Genomics and Genetics, 2025, Vol.16, No.4, 184-194 http://cropscipublisher.com/index.php/tgg 192 Gupta P., Balyan H., Chhuneja P., Jaiswal J., Tamhankar S., Mishra V., Bains N., Chand R., Joshi A., Kaur S., Kaur H., Mavi G., Oak M., Sharma A., Srivastava P., Sohu V., Prasad P., Agarwal P., Akhtar M., Badoni S., Chaudhary R., Gahlaut V., Gangwar R., Gautam T., Jaiswal V., Kumar R., Kumar S., Shamshad M., Singh A., Taygi S., Vasistha N., and Vishwakarma M., 2021, Pyramiding of genes for grain protein content, grain quality, and rust resistance in eleven Indian bread wheat cultivars: a multi-institutional effort, Molecular Breeding, 42: 21. https://doi.org/10.1007/s11032-022-01277-w Hafeez A., Arora S., Ghosh S., Gilbert D., Bowden R., and Wulff B., 2021, Creation and judicious application of a wheat resistance gene atlas, Molecular Plant, 14(7): 1053-1070. https://doi.org/10.1016/j.molp.2021.05.014 Hao Y., Pan Y., Chen W., Rashid M., Li M., Che N., Duan X., and Zhao Y., 2023, Contribution of duplicated nucleotide-binding leucine-rich repeat (NLR) genes to wheat disease resistance, Plants, 12(15): 2794. https://doi.org/10.3390/plants12152794 Jin X., Chi D., Wolfe D., Hiebert C., Fetch T., Cao W., Xue A., Humphreys G., and Fedak G., 2022, Wheat germplasm development by gene pyramiding for resistance to race TTKSK of stem rust, Canadian Journal of Plant Science, 102: 760-763. https://doi.org/10.1139/CJPS-2021-0251 Juliana P., Singh R., Singh P., Poland J., Bergstrom G., Huerta-Espino J., Bhavani S., Crossa J., and Sorrells M., 2018, Genome-wide association mapping for resistance to leaf rust, stripe rust and tan spot in wheat reveals potential candidate genes, Theoretical and Applied Genetics, 131: 1405-1422. https://doi.org/10.1007/s00122-018-3086-6 Khan S., Ali N., Khan F., Din I., Amjad M., and Ahmad I., 2025, Genetic diversity in wheat landraces for agronomic traits and yellow rust resistance, Genetic Resources and Crop Evolution, 72: 6165-6179. https://doi.org/10.1007/s10722-024-02308-5 Koller T., Camenzind M., Jung E., Brunner S., Herren G., Armbruster C., and Keller B., 2023, Pyramiding of transgenic immune receptors from primary and tertiary wheat gene pools improves powdery mildew resistance in the field, Journal of Experimental Botany, 75: 1872-1886. https://doi.org/10.1093/jxb/erad493 Krattinger S., Sucher J., Selter L., Chauhan H., Zhou B., Tang M., Upadhyaya N., Mieulet D., Guiderdoni E., Weidenbach D., Schaffrath U., Lagudah E., and Keller B., 2016, The wheat durable, multipathogen resistance gene Lr34 confers partial blast resistance in rice, Plant Biotechnology Journal, 14(5): 1261-1268. https://doi.org/10.1111/pbi.12491 Laroche A., Frick M., Graf R., Larsen J., and Laurie J., 2019, Pyramiding disease resistance genes in elite winter wheat germplasm for Western Canada, Crop Journal, 7: 739-749. https://doi.org/10.1016/j.cj.2019.08.005 Li L., Mao X., Wang J., Chang X., Reynolds M., and Jing R., 2019, Genetic dissection of drought and heat‐responsive agronomic traits in wheat, Plant, Cell & Environment, 42: 2540-2553. https://doi.org/10.1111/pce.13577 Liu J., Liu D., Tao W., Li W., Wang S., Chen P., Cheng S., and Gao D., 2000, Molecular marker-facilitated pyramiding of different genes for powdery mildew resistance in wheat, Plant Breeding, 119(1): 21-24. https://doi.org/10.1046/J.1439-0523.2000.00431.X Liu R., Lu J., Zhou M., Zheng S., Liu Z., Zhang C., Du M., Wang M., Li Y., Wu Y., and Zhang L., 2020, Developing stripe rust resistant wheat (Triticum aestivumL.) lines with gene pyramiding strategy and marker-assisted selection, Genetic Resources and Crop Evolution, 67: 381-391. https://doi.org/10.1007/s10722-019-00868-5 Luo J., Li S., Xu J., Yan L., Ma Y., and Xia L., 2021, Pyramiding favorable alleles in an elite wheat variety in one generation by CRISPR/Cas9-mediated multiplex gene editing, Molecular Plant, 14(6): 847-850. https://doi.org/10.1016/j.molp.2021.03.024 Luo K., He D., Guo J., Li G., Li B., and Chen X., 2023, Molecular advances in breeding for durable resistance against pests and diseases in wheat: opportunities and challenges, Agronomy, 13(3): 628. https://doi.org/10.3390/agronomy13030628 Ma K., Li X., Li Y., Wang Z., Zhao B., Wang B., and Li Q., 2021, Disease resistance and genes in 146 wheat cultivars (lines) from the Huang-Huai-Hai Region of China, Agronomy, 11(6): 1025. https://doi.org/10.3390/AGRONOMY11061025 Maulenbay A., Kurymbaeva N., Yskakova G., Baygutov M., Asraubaeva A., and Rsaliyev A., 2023, Study of agronomic and immunological traits of new facultative and winter wheat cultivar samples, Biosafety and Biotechnology, 13: 56-66. https://doi.org/10.58318/2957-5702-2023-13-56-66 Megahed E., Awaad H., Ramadan I., Abdul-Hamid M., Sweelam A., El-Naggar D., and Mansour E., 2022, Assessing performance and stability of yellow rust resistance, heat tolerance, and agronomic performance in diverse bread wheat genotypes for enhancing resilience to climate change under Egyptian conditions, Frontiers in Plant Science, 13: 1014824. https://doi.org/10.3389/fpls.2022.1014824 Melson E., Ibrahim A., and Drake D., 2023, Understanding and improving resistance to Hessian fly (Mayetiola destructor) in United States wheat using genetic mapping and molecular techniques, Crop Science, 64(1): 24-38. https://doi.org/10.1002/csc2.21162

RkJQdWJsaXNoZXIy MjQ4ODYzNA==