Triticeae Genomics and Genetics, 2025, Vol.16, No.4, 166-174 http://cropscipublisher.com/index.php/tgg 174 Ullah I., Majeed H., Batool R., Farooq S., Gulab R., and Habiba S., 2024, A review: exploring genetic variation and regulatory networks in wheat heat stress tolerance, Biological and Clinical Sciences Research Journal, 1(1): 1342. https://doi.org/10.54112/bcsrj.v2024i1.1342 Vukovic R., Čamagajevac I., Vukovic A., Šunić K., Begović L., Mlinarić S., Sekulić R., Sabo N., and Španić V., 2022, Physiological, biochemical and molecular response of different winter wheat varieties under drought stress at germination and seedling growth stage, Antioxidants, 11(4): 693. https://doi.org/10.3390/antiox11040693 Xing L., Di Z., Yang W., Liu J., Li M., Wang X., Cui C., Wang X., Wang X., Zhang R., Xiao J., and Cao A., 2017, Overexpression of ERF1-V fromHaynaldia villosa can enhance the resistance of wheat to powdery mildew and increase the tolerance to salt and drought stresses, Frontiers in Plant Science, 8: 1948. https://doi.org/10.3389/fpls.2017.01948 Zahra N., Wahid A., Hafeez M., Ullah A., Siddique K., and Farooq M., 2021, Grain development in wheat under combined heat and drought stress: plant responses and management, Environmental and Experimental Botany, 188: 104517. https://doi.org/10.1016/J.ENVEXPBOT.2021.104517
RkJQdWJsaXNoZXIy MjQ4ODYzNA==