Triticeae Genomics and Genetics, 2025, Vol.16, No.4, 166-174 http://cropscipublisher.com/index.php/tgg 173 Li S., Wang B., Liu D., Chen C., Feng P., Huang M., Wang X., Shi L., Waters C., Huete A., and Yu Q., 2024, Can agronomic options alleviate the risk of compound drought-heat events during the wheat flowering period in southeastern Australia? European Journal of Agronomy, 153: 127030. https://doi.org/10.1016/j.eja.2023.127030 Li S., Zhang Y., Liu Y., Zhang P., Wang X., Chen B., Ding L., Nie Y., Li F., Ma Z., Kang Z., and Mao H., 2023, The E3 ligase TaGW2 mediates transcription factor TaARR12 degradation to promote drought resistance in wheat, The Plant Cell, 36(3): 605-625. https://doi.org/10.1093/plcell/koad307 Mao H., Jiang C., Tang C., Nie X., Du L., Liu Y., Cheng P., Wu Y., Liu H., Kang Z., and Wang X., 2023, Wheat adaptation to environmental stresses under climate change: Molecular basis and genetic improvement, Molecular Plant, 16(10): 1564-1589. https://doi.org/10.1016/j.molp.2023.09.001 Marček T., Hamow K., Végh B., Janda T., and Darko E., 2019, Metabolic response to drought in six winter wheat genotypes, PLoS ONE, 14(2): e0212411. https://doi.org/10.1371/journal.pone.0212411 Omar A., Heikal Y., Zayed E., Shamseldin S., Salama Y., Amer K., Basuoni M., Ellatif S., and Mohamed A., 2023, Conferring of drought and heat stress tolerance in wheat (Triticum aestivumL.) genotypes and their response to selenium nanoparticles application, Nanomaterials, 13(6): 998. https://doi.org/10.3390/nano13060998 Pn V., and Patil S., 2024, Integrating genetic tools for enhancing abiotic stress resilience in wheat, International Journal of Advanced Biochemistry Research, 8(8): 1114-1122. https://doi.org/10.33545/26174693.2024.v8.i8n.2498 Qaseem M., Qureshi R., and Shaheen H., 2019, Effects of pre-anthesis drought, heat and their combination on the growth, yield and physiology of diverse wheat (Triticum aestivumL.) genotypes varying in sensitivity to heat and drought stress, Scientific Reports, 9: 6955. https://doi.org/10.1038/s41598-019-43477-z Rampino P., Pataleo S., Gerardi C., Mita G., and Perrotta C., 2006, Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes, Plant, Cell & Environment, 29(12): 2143-2152. https://doi.org/10.1111/J.1365-3040.2006.01588.X Ru C., Hu X., Chen D., Wang W., and Zhen J., 2022, Photosynthetic, antioxidant activities, and osmoregulatory responses in winter wheat differ during the stress and recovery periods under heat, drought, and combined stress, Plant Science, 327: 111557. https://doi.org/10.1016/j.plantsci.2022.111557 Saad A., Li X., Li H., Huang T., Gao C., Guo M., Cheng W., Zhao G., and Liao Y., 2013, A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses, Plant Science, 203-204: 33-40. https://doi.org/10.1016/j.plantsci.2012.12.016 Saidi M., Mahjoubi H., and Yacoubi I., 2022, Transcriptome meta-analysis of abiotic stresses-responsive genes and identification of candidate transcription factors for broad stress tolerance in wheat, Protoplasma, 260: 707-721. https://doi.org/10.1007/s00709-022-01807-5 Sareen S., Budhlakoti N., Mishra K., Bharad S., Potdukhe N., Tyagi B., and Singh G., 2023a, Resilience to terminal drought, heat, and their combination stress in wheat genotypes, Agronomy, 13(3): 891. https://doi.org/10.3390/agronomy13030891 Sareen S., Meena B., Sarial A., and Kumar S., 2023b, Dissecting physiological traits for drought and heat tolerance in wheat, Cereal Research Communications, 52: 1373-1384. https://doi.org/10.1007/s42976-023-00463-6 Sattar A., Sher A., Ijaz M., Ul-Allah S., Rizwan M., Hussain M., Jabran K., and Cheema M., 2020, Terminal drought and heat stress alter physiological and biochemical attributes in flag leaf of bread wheat, PLoS ONE, 18(4): e0284070. https://doi.org/10.1371/journal.pone.0232974 Sehgal D., Dhakate P., Ambreen H., Shaik K., Rathan N., Anusha N., Deshmukh R., and Vikram P., 2023, Wheat omics: advancements and opportunities, Plants, 12(3): 426. https://doi.org/10.3390/plants12030426 Shah T., Xu J., Zou X., Cheng Y., Nasir M., and Zhang X., 2018, Omics approaches for engineering wheat production under abiotic stresses, International Journal of Molecular Sciences, 19(8): 2390. https://doi.org/10.3390/ijms19082390 Tanin M., Saini D., Sandhu K., Pal N., Gudi S., Chaudhary J., and Sharma A., 2022, Consensus genomic regions associated with multiple abiotic stress tolerance in wheat and implications for wheat breeding, Scientific Reports, 12: 13680. https://doi.org/10.1038/s41598-022-18149-0 Tricker P., ElHabti A., Schmidt J., and Fleury D., 2018, The physiological and genetic basis of combined drought and heat tolerance in wheat, Journal of Experimental Botany, 69: 3195-3210. https://doi.org/10.1093/jxb/ery081 Trono D., and Pecchioni N., 2022, Candidate genes associated with abiotic stress response in plants as tools to engineer tolerance to drought, salinity and extreme temperatures in wheat: an overview, Plants, 11(23): 3358. https://doi.org/10.3390/plants11233358
RkJQdWJsaXNoZXIy MjQ4ODYzNA==