TGG_2025v16n4

Triticeae Genomics and Genetics, 2025, Vol.16, No.4, 166-174 http://cropscipublisher.com/index.php/tgg 172 Conflict of Interest Disclosure The author affirms that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Aberkane H., Belkadi B., Kehel Z., Filali-Maltouf A., Tahir I., Meheesi S., and Amri A., 2021, Assessment of drought and heat tolerance of durum wheat lines derived from interspecific crosses using physiological parameters and stress indices, Agronomy, 11(4): 695. https://doi.org/10.3390/AGRONOMY11040695 Ahmad Z., Waraich E., Akhtar S., Anjum S., Ahmad T., Mahboob W., Hafeez O., Tapera T., Labuschagne M., and Rizwan M., 2018, Physiological responses of wheat to drought stress and its mitigation approaches, Acta Physiologiae Plantarum, 40: 1-13. https://doi.org/10.1007/s11738-018-2651-6 Alsamadany H., Alzahrani Y., and Shah Z., 2023, Physiomorphic and molecular-based evaluation of wheat germplasm under drought and heat stress, Frontiers in Plant Science, 14: 1107945. https://doi.org/10.3389/fpls.2023.1107945 Azmat A., Tanveer Y., Yasmin H., Hassan M., Shahzad A., Reddy M., and Ahmad A., 2022, Coactive role of zinc oxide nanoparticles and plant growth promoting rhizobacteria for mitigation of Synchronized effects of heat and drought stress in wheat plants, Chemosphere, 297: 133982. https://doi.org/10.1016/j.chemosphere.2022.133982 Bapela T., Shimelis H., Tsilo T., and Mathew I., 2022, Genetic improvement of wheat for drought tolerance: progress, challenges and opportunities, Plants, 11(10): 1331. https://doi.org/10.3390/plants11101331 Bhatta M., Morgounov A., Belamkar V., Wegulo S., Dababat A., Erginbas-Orakci G., Bouhssini M., Gautam P., Poland J., Akci N., Demir L., Wanyera R., and Baenziger P., 2019, Genome-wide association study for multiple biotic stress resistance in synthetic hexaploid wheat, International Journal of Molecular Sciences, 20(15): 3667. https://doi.org/10.3390/ijms20153667 Da Ros L., Bollina V., Soolanayakanahally R., Pahari S., Elferjani R., Kulkarni M., Vaid N., Risseuw E., Cram D., Pasha A., Esteban E., Konkin D., Provart N., Nambara E., and Kagale S., 2023, Multi-omics atlas of combinatorial abiotic stress responses in wheat, The Plant Journal, 116(4): 1118-1135. https://doi.org/10.1111/tpj.16332 Deihimfard R., Rahimi-Moghaddam S., Eyni‐Nargeseh H., and Collins B., 2023, An optimal combination of sowing date and cultivar could mitigate the impact of simultaneous heat and drought on rainfed wheat in arid regions, European Journal of Agronomy, 147: 126848. https://doi.org/10.1016/j.eja.2023.126848 Farooq M., 2023, Tolerance against combined drought and heat stresses in wheat landraces of omani origin: morphological, physiological, biochemical, and grain yield assessment, Journal of Soil Science and Plant Nutrition, 23: 6034-6047. https://doi.org/10.1007/s42729-023-01462-6 Farooq M., Rizwan M., Nawaz A., Rehman A., and Ahmad R., 2017, Application of natural plant extracts improves the tolerance against combined terminal heat and drought stresses in bread wheat, Journal of Agronomy and Crop Science, 203: 528-538. https://doi.org/10.1111/JAC.12214 Hunt J., Hayman P., Richards R., and Passioura J., 2018, Opportunities to reduce heat damage in rain-fed wheat crops based on plant breeding and agronomic management, Field Crops Research, 224: 126-138. https://doi.org/10.1016/J.FCR.2018.05.012 Itam M., Mega R., Tadano S., Abdelrahman M., Matsunaga S., Yamasaki Y., Akashi K., and Tsujimoto H., 2020, Metabolic and physiological responses to progressive drought stress in bread wheat, Scientific Reports, 10: 17189. https://doi.org/10.1038/s41598-020-74303-6 Jeyasri R., Muthuramalingam P., Satish L., Pandian S., Chen J., Ahmar S., Wang X., Mora-Poblete F., and Ramesh M., 2021, An overview of abiotic stress in cereal crops: negative impacts, regulation, biotechnology and integrated omics, Plants, 10(7): 1472. https://doi.org/10.3390/plants10071472 Kathuria D., Singh N., Thakur S., Awasthi T., and Mudgal S., 2024, Nurturing wheat resilience: an overview of unravelling the detrimental effects of drought and heat stress (HS) on plant growth and grain quality and mitigation approaches for sustainable agriculture, Environment Conservation Journal, 25(4): 1238-1251. https://doi.org/10.36953/ecj.30560424 Komatsu S., Kamal A., and Hossain Z., 2014, Wheat proteomics: proteome modulation and abiotic stress acclimation, Frontiers in Plant Science, 5: 684. https://doi.org/10.3389/fpls.2014.00684 Kulkarni M., Soolanayakanahally R., Ogawa S., Uga Y., Selvaraj M., and Kagale S., 2017, Drought response in wheat: key genes and regulatory mechanisms controlling root system architecture and transpiration efficiency, Frontiers in Chemistry, 5: 106. https://doi.org/10.3389/fchem.2017.00106 Langridge P., and Reynolds M., 2021, Breeding for drought and heat tolerance in wheat, Theoretical and Applied Genetics, 134: 1753-1769. https://doi.org/10.1007/s00122-021-03795-1

RkJQdWJsaXNoZXIy MjQ4ODYzNA==