TGG_2025v16n4

Triticeae Genomics and Genetics, 2025, Vol.16, No.4, 148-155 http://cropscipublisher.com/index.php/tgg 154 Hao F., Liu T., Zhang Z., and Qiu D., 2024, Analysis of nutritional quality and processing characteristics of high-quality strong gluten wheat flour, IOSR Journal of Environmental Science Toxicology and Food Technology, 18(11): 1-7. https://doi.org/10.9790/2402-1811020107 Hou S., Dang H., Huang T., Huang Q., Li C., Li X., Sun Y., Chu H., Qiu W., Liu J., Shi M., He G., Siddique K., and Wang Z., 2023, Targeting high nutrient efficiency to reduce fertilizer input in wheat production of China, Field Crops Research, 292: 108809. https://doi.org/10.1016/j.fcr.2023.108809 Huang M., Zhang S., Yang M., Sun Y., Xie Q., Zhao C., Ren K., Zhao K., Jia Y., Zhang J., Wu S., Li C., Wang H., Fu G., Shaaban M., Wu J., and Li Y., 2024, One-off irrigation combined subsoiling and nitrogen management enhances wheat grain yield by optimizing physiological characteristics in leaves in dryland regions, Plants, 13(24): 3526. https://doi.org/10.3390/plants13243526 Kartseva T., Alqudah A., Aleksandrov V., Alomari D., Doneva D., Arif M., Börner A., and Misheva S., 2023, Nutritional genomic approach for improving grain protein content in wheat, Foods, 12(7): 1399. https://doi.org/10.3390/foods12071399 Katamadze A., Vergara-Díaz O., Uberegui E., Yoldi-Achalandabaso A., Araus J., and Vicente R., 2023, Evolution of wheat architecture, physiology, and metabolism during domestication and further cultivation: lessons for crop improvement, The Crop Journal, 11(4): 1080-1096. https://doi.org/10.1016/j.cj.2023.06.006 Khalid A., Hameed A., and Tahir M., 2023, Wheat quality: a review on chemical composition, nutritional attributes, grain anatomy, types, classification, and function of seed storage proteins in bread making quality, Frontiers in Nutrition, 10: 1053196. https://doi.org/10.3389/fnut.2023.1053196 Li S., Zhang C., Li J., Yan L., Wang N., and Xia L., 2021, Present and future prospects for wheat improvement through genome editing and advanced technologies, Plant Communications, 2(4): 100211. https://doi.org/10.1016/j.xplc.2021.100211 Li T., Zhao D., Li Y., Wang Z., Wen X., and Liao Y., 2023, Assessment of the effects of integrated rotation-tillage management on wheat productivity in the Loess Plateau region, European Journal of Agronomy, 149: 126906. https://doi.org/10.1016/j.eja.2023.126906 Liu Z., Gao J., Gao F., Dong S., Liu P., Zhao B., and Zhang J., 2018, Integrated agronomic practices management improve yield and nitrogen balance in double cropping of winter wheat-summer maize, Field Crops Research, 221: 196-206. https://doi.org/10.1016/J.FCR.2018.03.001 Lou H., Zhang R., Liu Y., Guo D., Zhai S., Chen A., Zhang Y., Xie C., You M., Peng H., Liang R., Ni Z., Sun Q., and Li B., 2020, Genome-wide association study of six quality-related traits in common wheat (Triticum aestivumL.) under two sowing conditions, Theoretical and Applied Genetics, 134: 399-418. https://doi.org/10.1007/s00122-020-03704-y Melash A., and Ábrahám É., 2022, Barriers and levers to enhance end-use functional properties of durum wheat (Triticum turgidum L.) grain: an agronomic implication, Heliyon, 8(5): e09542. https://doi.org/10.1016/j.heliyon.2022.e09542 Mondal S., Rutkoski J., Velu G., Singh P., Crespo-Herrera L., Guzmán C., Bhavani S., Lan C., He X., and Singh R., 2016, Harnessing diversity in wheat to enhance grain yield, climate resilience, disease and insect pest resistance and nutrition through conventional and modern breeding approaches, Frontiers in Plant Science, 7: 991. https://doi.org/10.3389/fpls.2016.00991 Mougiou N., Didos S., Bouzouka I., Theodorakopoulou A., Kornaros M., Mylonas I., and Argiriou A., 2023, Valorizing traditional greek wheat varieties: phylogenetic profile and biochemical analysis of their nutritional value, Agronomy, 13(11): 2703. https://doi.org/10.3390/agronomy13112703 Paramesh V., Dhar S., Dass A., Kumar B., Kumar A., El-Ansary D., and Elansary H., 2020, Role of integrated nutrient management and agronomic fortification of zinc on yield, nutrient uptake and quality of wheat, Sustainability, 12: 3513. https://doi.org/10.3390/su12093513 Paux E., Lafarge S., Balfourier F., Derory J., Charmet G., Alaux M., Perchet G., Bondoux M., Baret F., Barillot R., Ravel C., Sourdille P., Gouis L., and Consortium O., 2022, Breeding for economically and environmentally sustainable wheat varieties: an integrated approach from genomics to selection, Biology, 11(1): 149. https://doi.org/10.3390/biology11010149 Petrović S., Vila S., Šestanj S., and Rebekić A., 2024, Variation in nutritional value of diverse wheat genotypes, Agronomy, 14(2): 311. https://doi.org/10.3390/agronomy14020311 Rabieyan E., Bihamta M., Mostashari M., Moghaddam M., Mohammadi V., and Alipour H., 2023, Applying genetic biofortification for screening of iranian bread wheat genotypes with high grain yield and nutritional quality, Journal of Soil Science and Plant Nutrition, 23: 1235-1253. https://doi.org/10.1007/s42729-022-01117-y Rajaram S., 2001, Prospects and promise of wheat breeding in the 21st century, Euphytica, 119: 3-15. https://doi.org/10.1023/A:1017538304429 Saquee F., Pakina E., Zargar M., Norman P., Vladimirovna K., and Tsymbalova V., 2024, Economic parameter estimates of spring wheat varieties grown under different cultivation technologies, Biocatalysis and Agricultural Biotechnology, 62: 103454. https://doi.org/10.1016/j.bcab.2024.103454

RkJQdWJsaXNoZXIy MjQ4ODYzNA==