TGG_2025v16n3

Triticeae Genomics and Genetics, 2025, Vol.16, No.3, 138-147 http://cropscipublisher.com/index.php/tgg 146 Cao S., Xu D., Hanif M., Xia X., and He Z., 2020, Genetic architecture underpinning yield component traits in wheat, Theoretical and Applied Genetics, 133: 1811-1823. https://doi.org/10.1007/s00122-020-03562-8 Chunduri V., Kaur A., Kaur S., Kumar A., Sharma S., Sharma N., Singh P., Kapoor P., Kaur S., Kumari A., Roy J., Kaur J., and Garg M., 2021, Gene expression and proteomics studies suggest an involvement of multiple pathways under day and day-night combined heat stresses during grain filling in wheat, Frontiers in Plant Science, 12: 660446. https://doi.org/10.3389/fpls.2021.660446 Dong L., Liu H., Zhang J., Yang S., Kong G., Chu J., Chen N., and Wang D., 2015, Single-molecule real-time transcript sequencing facilitates common wheat genome annotation and grain transcriptome research, BMC Genomics, 16: 1039. https://doi.org/10.1186/s12864-015-2257-y Fang Z., Kapoor R., Datta A., Liu S., Stull M., Seitz P., Johnson C., and Okumoto S., 2022, Transcriptome analysis of developing grains from wheat cultivars TAM 111 and TAM 112 reveal cultivar-specific regulatory networks, International Journal of Molecular Sciences, 23(20): 12660. https://doi.org/10.3390/ijms232012660 Guan J., Wang Z., Liu S., Kong X., Wang F., Sun G., Geng S., Mao L., Zhou P., and Li A., 2022, Transcriptome analysis of developing wheat grains at rapid expanding phase reveals dynamic gene expression patterns, Biology, 11(2): 281. https://doi.org/10.3390/biology11020281 Gudi S., Saini D., Singh G., Halladakeri P., Kumar P., Shamshad M., Tanin M., Singh S., and Sharma A., 2022, Unravelling consensus genomic regions associated with quality traits in wheat using meta-analysis of quantitative trait loci, Planta, 255: 115. https://doi.org/10.1007/s00425-022-03904-4 Gupta O., Pandey V., Saini R., Khandale T., Singh A., Malik V., Narwal S., Ram S., and Singh G., 2021, Comparative physiological, biochemical and transcriptomic analysis of hexaploid wheat (T. aestivumL.) roots and shoots identifies potential pathways and their molecular regulatory network during Fe and Zn starvation, Genomics, 113(5): 3357-3372. https://doi.org/10.1016/j.ygeno.2021.07.029 Hou Q., Gao J., Wang H., Qin Z., Sun H., Yuan S., Liang Y., Wang C., Zhang F., and Yang W., 2024, Physiological and transcriptome analyses provide insights into the response of grain filling to high temperature in male-sterile wheat (Triticum aestivumL.) lines, International Journal of Molecular Sciences, 25(22): 12230. https://doi.org/10.3390/ijms252212230 Li N., Miao Y., Ma J., Zhang P., Chen T., Liu Y., Che Z., Shahinnia F., and Yang D., 2023, Consensus genomic regions for grain quality traits in wheat revealed by Meta‐QTL analysis and in silico transcriptome integration, The Plant Genome, 16(2): e20336. https://doi.org/10.1002/tpg2.20336 Li X., Wan Y., Wang D., Li X., Wu J., Chen K., Han X., and Chen Y., 2024, Temporal-spatial transcriptomics reveals key gene regulation for grain yield and quality in wheat, bioRxiv, 596756: 1-45. https://doi.org/10.1101/2024.06.02.596756 Li X., Wan Y., Wang D., Li X., Wu J., Xiao J., Chen K., Han X., and Chen Y., 2025, Spatiotemporal transcriptomics reveals key gene regulation for grain yield and quality in wheat, Genome Biology, 26: 93. https://doi.org/10.1186/s13059-025-03569-8 Liu H., Si X., Wang Z., Cao L., Gao L., Zhou X., Wang W., Wang K., Jiao C., Zhuang L., Liu Y., Hou J., Li T., Hao C., Guo W., Liu J., and Zhang X., 2023, TaTPP‐7A positively feedback regulates grain filling and wheat grain yield through T6P‐SnRK1 signalling pathway and sugar-ABA interaction, Plant Biotechnology Journal, 21: 1159-1175. https://doi.org/10.1111/pbi.14025 Liu J., Gock A., Ramm K., Stops S., Phongkham T., Norman A., Eastwood R., Stone E., and Dillon S., 2024, Incorporating gene expression and environment for genomic prediction in wheat, Frontiers in Plant Science, 16: 1506434. https://doi.org/10.3389/fpls.2025.1506434 Magar M., Liu H., and Yan G., 2024, Wheat TaAP2/ERF genes regulate heat tolerance through ethylene signaling at grain-filling stage, Journal of Plant Growth Regulation, 43: 2855-2872. https://doi.org/10.1007/s00344-024-11313-y Mirosavljević M., Mikić S., Župunski V., Špika A., Trkulja D., Ottosen C., Zhou R., and Abdelhakim L., 2021, Effects of high temperature during anthesis and grain filling on physiological characteristics of winter wheat cultivars, Journal of Agronomy and Crop Science, 207(5): 823-832. https://doi.org/10.1111/jac.12546 Qu P., Wang J., Wen W., Gao F., Liu J., Xia X., Peng H., and Zhang L., 2021, Construction of consensus genetic map with applications in gene mapping of wheat (Triticum aestivumL.) using 90K SNP array, Frontiers in Plant Science, 12: 727077. https://doi.org/10.3389/fpls.2021.727077 Rangan P., Furtado A., and Henry R., 2017, The transcriptome of the developing grain: a resource for understanding seed development and the molecular control of the functional and nutritional properties of wheat, BMC Genomics, 18: 766. https://doi.org/10.1186/s12864-017-4154-z Rangan P., Furtado A., and Henry R., 2020, Transcriptome profiling of wheat genotypes under heat stress during grain-filling, Journal of Cereal Science, 91: 102895. https://doi.org/10.1016/j.jcs.2019.102895

RkJQdWJsaXNoZXIy MjQ4ODYzNA==