TGG_2025v16n3

Triticeae Genomics and Genetics, 2025, Vol.16, No.3, 130-137 http://cropscipublisher.com/index.php/tgg 137 Rakoczy-Trojanowska M., Bolibok-Brągoszewska H., Myśków B., Dzięgielewska M., Stojałowski S., Grądzielewska A., Boczkowska M., and Moskal K., 2021, Genetics and genomics of stress tolerance, Compendium of Plant Genomes, 11: 213-236. https://doi.org/10.1007/978-3-030-83383-1_11 Röll G., Memic E., and Graeff-Hönninger S., 2020, Implementation of an automatic time-series calibration method for the DSSAT wheat models to enhance multi-model approaches, Agronomy Journal, 112(5): 3891-3912. https://doi.org/10.1002/agj2.20328 Sabaghnia N., and Janmohammdi M., 2024, Genetic diversity in rye (Secale cereale L.) landraces based on agro-morphological traits under the semi-arid conditions of Iran, Genetic Resources and Crop Evolution, 72: 5127-5138. https://doi.org/10.1007/s10722-024-02188-9 Safonova I., and Aniskov N., 2022, The importance of a comprehensive assessment of breeding indices and stress resistance parameters of winter rye varieties, Agrarian Bulletin of the, 221(6): 16-26. https://doi.org/10.32417/1997-4868-2022-221-06-16-26 Safonova I., and Aniskov N., 2023, The effectiveness of using some criteria for determining adaptability on the example of winter rye cultivars, Proceedings on Applied Botany, Genetics and Breeding, 184(2): 66-75. https://doi.org/10.30901/2227-8834-2023-2-66-75 Schittenhelm S., Kraft M., and Wittich K., 2014, Performance of winter cereals grown on field-stored soil moisture only, European Journal of Agronomy, 52: 247-258. https://doi.org/10.1016/J.EJA.2013.08.010 Shawon A., Memic E., Kottmann L., Uptmoor R., Hackauf B., and Feike T., 2024, Comprehensive evaluation of the DSSAT‐CSM‐CERES‐Wheat for simulating winter rye against multi‐environment data in Germany, Agronomy Journal, 116(4): 1844-1868. https://doi.org/10.1002/agj2.21590 Siekmann D., Jansen G., Zaar A., Kilian A., Fromme F., and Hackauf B., 2021, A genome-wide association study pinpoints quantitative trait genes for plant height, heading date, grain quality, and yield in rye (Secale cereale L.), Frontiers in Plant Science, 12: 718081. https://doi.org/10.3389/fpls.2021.718081 Stępniewska S., Cacak-Pietrzak G., Fraś A., Jończyk K., Studnicki M., Wiśniewska M., Gzowska M., and Salamon A., 2024, Effect of genotype and environment on yield and technological and nutrition traits on winter rye grain from organic production, Agriculture, 14(12): 2249. https://doi.org/10.3390/agriculture14122249 Sułek A., Cacak-Pietrzak G., Studnicki M., Grabiński J., Nieróbca A., Wyzińska M., and Różewicz M., 2024, Influence of nitrogen fertilisation level and weather conditions on yield and quantitative profile of anti-nutritional compounds in grain of selected rye cultivars, Agriculture, 14(3): 418. https://doi.org/10.3390/agriculture14030418 Yari S., Sabaghnia N., Pasandi M., and Janmohammadi M., 2018, Assessment of genotype × trait interaction of rye genotypes for some morphologic traits through GGE biplot methodology, Annales Universitatis Mariae Curie-Sklodowska, sectio C-Biologia, 72(1): 37-45. https://doi.org/10.17951/c.2017.72.1.37-45 Zymaroieva A., and Nykytiuk Y., 2023, Agroecological drivers of winter rye (Secale cereale) yield spatio-temporal variation, Agrology, 6(4): 86-91. https://doi.org/10.32819/021114

RkJQdWJsaXNoZXIy MjQ4ODYzNA==