Triticeae Genomics and Genetics, 2025, Vol.16, No.3, 120-129 http://cropscipublisher.com/index.php/tgg 128 Eissa H., Hassanien S., Ramadan A., El-Shamy M., Saleh O., Shokry A., Abdelsattar M., Morsy Y., El-Maghraby M., Alameldin H., Hassan S., Osman G., Mahfouz H., El-Karim G., Madkour M., and Bahieldin A., 2017, Developing transgenic wheat to encounter rusts and powdery mildew by overexpressing barley chi26 gene for fungal resistance, Plant Methods, 13: 41. https://doi.org/10.1186/s13007-017-0191-5 Hafeez A., Arora S., Ghosh S., Gilbert D., Bowden R., and Wulff B., 2021, Creation and judicious application of a wheat resistance gene atlas, Molecular Plant, 14(7): 1053-1070. https://doi.org/10.1016/j.molp.2021.05.014 Huang F., Du X.Y., Zou S.K., Wang L., and Han Y.L., 2024, Advancements in wheat hybridization: overcoming biological barriers, Bioscience Evidence, 14(5): 195-205. https://doi.org/10.5376/be.2024.14.0021 Hussain B., Akpınar B., Alaux M., Algharib A., Sehgal D., Ali Z., Aradottir G., Batley J., Bellec A., Bentley A., Cagirici H., Cattivelli L., Choulet F., Cockram J., Desiderio F., Devaux P., Doğramacı M., Dorado G., Dreisigacker S., Edwards D., El-Hassouni K., Eversole K., Fahima T., Figueroa M., Gálvez S., Gill K., Govta L., Gul A., Hensel G., Hernández P., Crespo-Herrera L., Ibrahim A., Kilian B., Korzun V., Krugman T., Li, Y., Liu S., Mahmoud A., Morgounov A., Muslu T., Naseer F., Ordon F., Paux E., Perović D., Reddy G., Reif J., Reynolds M., Roychowdhury R., Rudd J., Sen T., Sukumaran S., Ozdemir B., Tiwari V., Ullah N., Unver T., Yazar S., Appels R., and Budak H., 2022, Capturing wheat phenotypes at the genome level, Frontiers in Plant Science, 13: 851079. https://doi.org/10.3389/fpls.2022.851079 Jost M., Outram M., Dibley K., Zhang J., Luo M., and Ayliffe M., 2023, Plant and pathogen genomics: essential approaches for stem rust resistance gene stacks in wheat, Frontiers in Plant Science, 14: 1223504. https://doi.org/10.3389/fpls.2023.1223504 Koller T., Camenzind M., Jung E., Brunner S., Herren G., Armbruster C., and Keller B., 2023, Pyramiding of transgenic immune receptors from primary and tertiary wheat gene pools improves powdery mildew resistance in the field, Journal of Experimental Botany, 75: 1872-1886. https://doi.org/10.1093/jxb/erad493 Li M., Zhang H., Xiao H., Zhu K., Shi W., Zhang D., Wang Y., Yang L., Wu Q., Xie J., Chen Y., Qiu D., Guo G., Lu P., Li B., Dong L., Li W., Cui X., Li L., Tian X., Yuan C., Li Y., Yu D., Nevo E., Fahima T., Li H., Dong L., Zhao Y., and Liu Z., 2024, A membrane associated tandem kinase from wild emmer wheat confers broad-spectrum resistance to powdery mildew, Nature Communications, 15: 3124. https://doi.org/10.1038/s41467-024-47497-w Li S., Zhang C., Li J., Yan L., Wang N., and Xia L., 2021, Present and future prospects for wheat improvement through genome editing and advanced technologies, Plant Communications, 2(4): 100211. https://doi.org/10.1016/j.xplc.2021.100211 Luo M., Xie L., Chakraborty S., Wang A., Matny O., Jugovich M., Kolmer J., Richardson T., Bhatt D., Hoque M., Patpour M., Sørensen C., Ortiz D., Dodds P., Steuernagel B., Wulff B., Upadhyaya N., Mago R., Periyannan, S., Lagudah E., Freedman R., Reuber L., Steffenson B., and Ayliffe M., 2021, A five-transgene cassette confers broad-spectrum resistance to a fungal rust pathogen in wheat, Nature Biotechnology, 39: 561-566. https://doi.org/10.1038/s41587-020-00770-x Ma Y.X., Yang S., and Lang S.P., 2024, Application of CRISPR/Cas9 in wheat genetic improvement, Bioscience Methods, 15(6): 315-326. https://doi.org/10.5376/bm.2024.15.0031 Ni F., Zheng Y., Liu X., Yu Y., Zhang G., Epstein L., Mao X., Wu J., Yuan C., Lv B., Yu H., Li J., Zhao Q., Yang Q., Liu J., Qi J., Fu D., and Wu J., 2023, Sequencing trait-associated mutations to clone wheat rust-resistance gene YrNAM, Nature Communications, 14: 4353. https://doi.org/10.1038/s41467-023-39993-2 Ramirez-Gonzalez R., Borrill P., Lang D., Harrington S., Brinton J., Venturini L., Davey M., Jacobs J., Van Ex F., Pasha A., Khedikar Y., Robinson S., Cory A., Florio T., Concia L., Juery C., Schoonbeek H., Steuernagel B., Xiang D., Ridout C., Chalhoub B., Mayer K., Benhamed M., Latrasse D., Bendahmane A., Wulff B., Appels R., Tiwari V., Datla R., Choulet F., Pozniak C., Provart N., Sharpe A., Paux E., Spannagl M., Bräutigam A., and Uauy C., 2018, The transcriptional landscape of polyploid wheat, Science, 361: 6403. https://doi.org/10.1126/science.aar6089 Rasheed A., Mujeeb-Kazi A., Ogbonnaya F., He Z., and Rajaram S., 2018, Wheat genetic resources in the post-genomics era: promise and challenges, Annals of Botany, 121: 603-616. https://doi.org/10.1093/aob/mcx148 Risk J., Selter L., Krattinger S., Viccars L., Richardson T., Buesing G., Herren G., Lagudah E., and Keller B., 2012, Functional variability of the Lr34 durable resistance gene in transgenic wheat, Plant Biotechnology Journal, 10(4): 477-487. https://doi.org/10.1111/j.1467-7652.2012.00683.x Saintenac C., Cambon F., Aouini L., Verstappen E., Ghaffary S., Poucet T., Marande W., Bergès H., Xu S., Jaouannet M., Favery B., Alassimone J., Sánchez-Vallet A., Faris J., Kema G., Robert O., and Langin T., 2021, A wheat cysteine-rich receptor-like kinase confers broad-spectrum resistance against Septoria tritici blotch, Nature Communications, 12: 433. https://doi.org/10.1038/s41467-020-20685-0 Singla J., Lüthi L., Wicker T., Bansal U., Krattinger S., and Keller B., 2016, Characterization of Lr75: a partial, broad-spectrum leaf rust resistance gene in wheat, Theoretical and Applied Genetics, 130: 1-12. https://doi.org/10.1007/s00122-016-2784-1
RkJQdWJsaXNoZXIy MjQ4ODYzNA==