TGG_2025v16n3

Triticeae Genomics and Genetics, 2025, Vol.16, No.3, 110-119 http://cropscipublisher.com/index.php/tgg 118 Nevo E., and Chen G., 2010, Drought and salt tolerances in wild relatives for wheat and barley improvement, Plant, Cell & Environment, 33(4): 670-685. https://doi.org/10.1111/j.1365-3040.2009.02107.x Ongen H., Buil A., Brown A., Dermitzakis E., and Delaneau O., 2015, Fast and efficient QTL mapper for thousands of molecular phenotypes, Bioinformatics, 32: 1479-1485. https://doi.org/10.1093/bioinformatics/btv722 Pantha S., Kilian B., Özkan H., Zeibig F., and Frei M., 2024, Physiological and biochemical changes induced by drought stress during the stem elongation and anthesis stages in the Triticum genus, Environmental and Experimental Botany, 228(Part B): 106047. https://doi.org/10.1016/j.envexpbot.2024.106047 Peleg Z., Fahima T., Krugman T., Abbo S., Yakir D., Korol A., and Saranga Y., 2009, Genomic dissection of drought resistance in durum wheat x wild emmer wheat recombinant inbreed line population, Plant, Cell & Environment, 32(7): 758-779. https://doi.org/10.1111/j.1365-3040.2009.01956.x Qiao M., Hong C., Jiao Y., Hou S., and Gao H., 2024, Impacts of drought on photosynthesis in major food crops and the related mechanisms of plant responses to drought, Plants, 13(13): 1808. https://doi.org/10.3390/plants13131808 Rosero A., Granda L., Berdugo-Cely J., Šamajová O., Šamaj J., and Cerkal R., 2020, A dual strategy of breeding for drought tolerance and introducing drought-tolerant, underutilized crops into production systems to enhance their resilience to water deficiency, Plants, 9(10): 1263. https://doi.org/10.3390/plants9101263 Ruffieux H., Fairfax B., Nassiri I., Vigorito E., Wallace C., Richardson S., and Bottolo L., 2020, EPISPOT: An epigenome-driven approach for detecting and interpreting hotspots in molecular QTL studies, American Journal of Human Genetics, 108: 983-1000. https://doi.org/10.1016/j.ajhg.2021.04.010 Salarpour M., Pakniyat H., Abdolshahi R., Heidari B., Razi H., and Afzali R., 2020, Mapping QTL for agronomic and root traits in the Kukri/RAC875 wheat (Triticum aestivumL.) population under drought stress conditions, Euphytica, 216: 105. https://doi.org/10.1007/s10681-020-02627-5 Sallam A., Alqudah A., Dawood M., Baenziger P., and Börner A., 2019, Drought stress tolerance in wheat and barley: advances in physiology, breeding and genetics research, International Journal of Molecular Sciences, 20(13): 3137. https://doi.org/10.3390/ijms20133137 Shakir A., Geng M., Tian J., and Wang R., 2025, Dissection of QTLs underlying the genetic basis of drought resistance in wheat: a meta-analysis, Theoretical and Applied Genetics, 138(1): 25. https://doi.org/10.1007/s00122-024-04811-w Singh C., Yadav S., Khare V., Gupta V., Patial M., Kumar S., Mishra C., Tyagi B., Gupta A., Sharma A., Ahlawat O., Singh G., and Tiwari R, 2025, Wheat drought tolerance: unveiling a synergistic future with conventional and molecular breeding strategies, Plants, 14(7): 1053. https://doi.org/10.3390/plants14071053 Su Q., Zhang X., Zhang W., Zhang N., Song L., Liu L., Xue X., Liu G., Liu J., Meng D., Zhi L., Ji J., Zhao X., Yang C., Tong Y., Liu Z., and Li J., 2018, QTL detection for kernel size and weight in bread wheat (Triticum aestivum L.) using a high-density SNP and SSR-based linkage map, Frontiers in Plant Science, 9: 1484. https://doi.org/10.3389/fpls.2018.01484 Tahmasebi S., Heidari B., Pakniyat H., McIntyre C., and Lukens L., 2017, Mapping QTLs associated with agronomic and physiological traits under terminal drought and heat stress conditions in wheat (Triticum aestivumL.), Genome, 60(1): 26-45. https://doi.org/10.1139/gen-2016-0017 Touzy G., Rincent R., Bogard M., Lafarge S., Dubreuil P., Mini A., Deswarte J., Beauchêne K., Gouis L., and Praud S., 2019, Using environmental clustering to identify specific drought tolerance QTLs in bread wheat (T. aestivumL.), Theoretical and Applied Genetics, 132: 2859-2880. https://doi.org/10.1007/s00122-019-03393-2 Ullah N., Yüce M., Gökçe N., and Budak H., 2017, Comparative metabolite profiling of drought stress in roots and leaves of seven Triticeae species, BMC Genomics, 18: 969. https://doi.org/10.1186/s12864-017-4321-2 Wan C., Dang P., Gao L., Wang J., Tao J., Qin X., Feng B., and Gao J., 2022, How does the environment affect wheat yield and protein content response to drought? A meta-analysis, Frontiers in Plant Science, 13: 896985. https://doi.org/10.3389/fpls.2022.896985 Wang Z., Lai X., Wang C., Yang H., Liu Z., Fan Z., Li J., Zhang H., Liu M., and Zhang Y., 2024, Exploring the drought tolerant quantitative trait loci in spring wheat, Plants, 13(6): 898. https://doi.org/10.3390/plants13060898 Wen X., 2016, Molecular QTL discovery incorporating genomic annotations using Bayesian false discovery rate control, The Annals of Applied Statistics, 10(3): 1619-1638. https://doi.org/10.1214/16-AOAS952 Xu Y., Li S., Li L., Ma F., Fu X., Shi Z., Xu H., Ma P., and An D., 2017, QTL mapping for yield and photosynthetic related traits under different water regimes in wheat, Molecular Breeding, 37: 1-18. https://doi.org/10.1007/s11032-016-0583-7

RkJQdWJsaXNoZXIy MjQ4ODYzNA==