TGG_2025v16n3

Triticeae Genomics and Genetics, 2025, Vol.16, No.3, 110-119 http://cropscipublisher.com/index.php/tgg 117 References Acuña-Galindo A., Mason E., Subramanian N., and Hays D., 2015, Meta‐analysis of wheat QTL regions associated with adaptation to drought and heat stress, Crop Science, 55: 477-492. https://doi.org/10.2135/CROPSCI2013.11.0793 Begna T., Naomi O., Amed L., Carolina J., Salvador C., Andres A., and Alberto R., 2021, Impact of drought stress on crop production and its management options, International Journal of Research Studies in Agricultural Sciences, 12: 1-13. https://doi.org/10.20431/2454-6224.0812001 Borevitz J., and Chory J., 2004, Genomics tools for QTL analysis and gene discovery, Current Opinion in Plant Biology, 7(2): 132-136. https://doi.org/10.1016/J.PBI.2004.01.011 Broman K., Gatti D., Simecek P., Furlotte N., Prins P., Sen Ś., Yandell B., and Churchill G., 2018, R/qtl2: software for mapping quantitative trait loci with high-dimensional data and multiparent populations, Genetics, 211: 495-502. https://doi.org/10.1534/genetics.118.301595 Caccialupi G., Milc J., Caradonia F., Nasar M., and Francia E., 2023, The Triticeae CBFgene cluster-to frost resistance and beyond, Cells, 12(22): 2606. https://doi.org/10.3390/cells12222606 Cooper M., and Messina C., 2022, Breeding crops for drought-affected environments and improved climate resilience, The Plant Cell, 35: 162-186. https://doi.org/10.1093/plcell/koac321 Delaneau O., Ongen H., Brown A., Fort A., Panousis N., and Dermitzakis E., 2016, A complete tool set for molecular QTL discovery and analysis, Nature Communications, 8: 15452. https://doi.org/10.1038/ncomms15452 Fadiji A., Santoyo G., Yadav A., and Babalola O., 2022, Efforts towards overcoming drought stress in crops: revisiting the mechanisms employed by plant growth-promoting bacteria, Frontiers in Microbiology, 13: 962427. https://doi.org/10.3389/fmicb.2022.962427 Gahlaut V., Jaiswal V., Tyagi B., Singh G., Sareen S., Balyan H., and Gupta P., 2017, QTL mapping for nine drought-responsive agronomic traits in bread wheat under irrigated and rain-fed environments, PLoS ONE, 12(8): e0182857. https://doi.org/10.1371/journal.pone.0182857 Gali K., Liu Y., Sindhu A., Diapari M., Shunmugam A., Arganosa G., Daba K., Caron C., Lachagari R., Tar’an B., and Warkentin T., 2018, Construction of high-density linkage maps for mapping quantitative trait loci for multiple traits in field pea (Pisum sativumL.), BMC Plant Biology, 18: 172. https://doi.org/10.1186/s12870-018-1368-4 Huang D., Feng X., Yang H., Wang J., Zhang W., Fan X., Dong X., Chen K., Yu Y., Ma X., Yi X., and Li M., 2022, QTLbase2: an enhanced catalog of human quantitative trait loci on extensive molecular phenotypes, Nucleic Acids Research, 51(D1): D1122-D1128. https://doi.org/10.1093/nar/gkac1020 Hussein H., Alshammari S., Kenawy S., Elkady F., and Badawy A., 2022, Grain-priming with l-arginine improves the growth performance of wheat (Triticum aestivumL.) plants under drought stress, Plants, 11(9): 1219. https://doi.org/10.3390/plants11091219 Khadka K., Earl H., Raizada M., and Navabi A., 2020, A physio-morphological trait-based approach for breeding drought tolerant wheat, Frontiers in Plant Science, 11: 715. https://doi.org/10.3389/fpls.2020.00715 Khaled K., Habiba R., Bashasha J., and El-Aziz M., 2022, Identification and mapping of QTL associated with some traits related for drought tolerance in wheat using SSR markers, Beni-Suef University Journal of Basic and Applied Sciences, 11: 38. https://doi.org/10.1186/s43088-022-00212-4 Kirigwi F., Ginkel M., Brown-Guedira G., Gill B., Paulsen G., and Fritz A., 2007, Markers associated with a QTL for grain yield in wheat under drought, Molecular Breeding, 20: 401-413. https://doi.org/10.1007/s11032-007-9100-3 Kumar A., Saripalli G., Jan I., Kumar K., Sharma P., and Balyan H., 2020, Meta-QTL analysis and identification of candidate genes for drought tolerance in bread wheat (Triticum aestivumL.), Physiology and Molecular Biology of Plants, 26, 1713-1725. https://doi.org/10.1007/s12298-020-00847-6 Macleod I., Macleod I., Bowman P., Bowman P., Jagt C., Haile-Mariam M., Kemper K., Chamberlain A., Schrooten C., Hayes B., Hayes B., Goddard M., and Goddard M., 2016, Exploiting biological priors and sequence variants enhances QTL discovery and genomic prediction of complex traits, BMC Genomics, 17: 144. https://doi.org/10.1186/s12864-016-2443-6 Mansfeld B., and Grumet R., 2017, QTLseqr: an R package for bulk segregant analysis with next-generation sequencing, The Plant Genome, 11(2): 180006. https://doi.org/10.3835/plantgenome2018.01.0006 Milner S., Maccaferri M., Huang B., Mantovani P., Massi A., Frascaroli E., Tuberosa R., and Salvi S., 2016, A multiparental cross population for mapping QTL for agronomic traits in durum wheat (Triticum turgidumssp. durum), Plant Biotechnology Journal, 14(2): 735-748. https://doi.org/10.1111/pbi.12424 Mwadzingeni L., Shimelis H., Dube E., Laing M., and Tsilo T., 2016, Breeding wheat for drought tolerance: progress and technologies, Journal of Integrative Agriculture, 15: 935-943. https://doi.org/10.1016/S2095-3119(15)61102-9

RkJQdWJsaXNoZXIy MjQ4ODYzNA==