Triticeae Genomics and Genetics, 2025, Vol.16, No.3, 101-109 http://cropscipublisher.com/index.php/tgg 108 References Alquicer G., Ibrahim E., Maruthi M., and Kundu J., 2023, Identifying putative resistance genes for barley yellow dwarf virus-PAV in wheat and barley, Viruses, 15(3): 716. https://doi.org/10.3390/v15030716 Cai R.X., 2024, Herbivorous insects in barley cultivation: impact and control methods, Molecular Entomology, 15(2): 69-77. http://dx.doi.org/10.5376/me.2024.15.0009 Cao Z., and Gao G., 2022, Multi-omics single-cell data integration and regulatory inference with graph-linked embedding, Nature Biotechnology, 40: 1458-1466. https://doi.org/10.1038/s41587-022-01284-4 Cembrowska-Lech D., Krzemińska A., Miller T., Nowakowska A., Adamski C., Radaczyńska M., Mikiciuk G., and Mikiciuk M., 2023, An integrated multi-omics and artificial intelligence framework for advance plant phenotyping in horticulture, Biology, 12(10): 1298. https://doi.org/10.3390/biology12101298 Choudhury S., Hu H., Larkin P., Meinke H., Shabala S., Ahmed I., and Zhou M., 2018, Agronomical, biochemical and histological response of resistant and susceptible wheat and barley under BYDV stress, PeerJ, 6: e4833. https://doi.org/10.7717/peerj.4833 Desta K., Choi Y., Yoon H., Lee S., Yi J., Jeon Y., Wang X., Park J., Kim K., and Shin M., 2024, Comprehensive characterization of global barley (Hordeum vulgare L.) collection using agronomic traits, β-glucan level, phenolic content, and antioxidant activities, Plants, 13(2): 169. https://doi.org/10.3390/plants13020169 Driedonks N., Rieu I., and Vriezen W.,2016, Breeding for plant heat tolerance at vegetative and reproductive stages, Plant Reproduction, 29: 67-79. https://doi.org/10.1007/s00497-016-0275-9 Gao S., Wu J., Stiller J., Zheng Z., Zhou M., Wang Y., and Liu C., 2020, Identifying barley pan-genome sequence anchors using genetic mapping and machine learning, Theoretical and Applied Genetics, 133: 2535-2544. https://doi.org/10.1007/s00122-020-03615-y Ghanem H., Najar A., Udupa S., Kumari S., Amri A., Rezgui S., Felah M., and Tsivelikas A., 2018, Exploiting intra-cultivar variation to select for Barley yellow dwarf virus-PAV (BYDV-PAV) resistance in barley, Canadian Journal of Plant Science, 98: 930-946. https://doi.org/10.1139/cjps-2017-0364 Hill C.B., and Li C., 2022, Genetic improvement of heat stress tolerance in cereal crops, Agronomy, 12(5): 1205. https://doi.org/10.3390/agronomy12051205 Jayakodi M., Padmarasu S., Haberer G., Bonthala V., Gundlach H., Monat C., Lux T., Kamal N., Lang D., Himmelbach A., Ens J., Zhang X., Angessa T., Zhou G., Tan C., Hill C., Wang P., Schreiber M., Boston L., Plott C., Jenkins J., Guo Y., Fiebig A., Budak H., Xu D., Zhang J., Wang C., Grimwood J., Schmutz J., Guo G., Zhang G., Mochida K., Hirayama T., Sato K., Chalmers K., Langridge P., Waugh R., Pozniak C., Scholz U., Mayer K., Spannagl M., Li C., Mascher M., and Stein N., 2020, The barley pan-genome reveals the hidden legacy of mutation breeding, Nature, 588: 284-289. https://doi.org/10.1038/s41586-020-2947-8 Jiang W., Ye W., Tan X., and Bao Y., 2025, Network-based multi-omics integrative analysis methods in drug discovery: a systematic review, BioData Mining, 18: 27. https://doi.org/10.1186/s13040-025-00442-z Muñoz‐Amatriaín M., Eichten S., Wicker T., Richmond T., Mascher M., Steuernagel B., Scholz U., Ariyadasa R., Spannagl M., Nussbaumer T., Mayer K., Taudien S., Platzer M., Jeddeloh J., Springer N., Muehlbauer G., and Stein N., 2013, Distribution, functional impact, and origin mechanisms of copy number variation in the barley genome, Genome Biology, 14: R58-R58. https://doi.org/10.1186/gb-2013-14-6-r58 Nancarrow N., Aftab M., Hollaway G., Rodoni B., and Trębicki P., 2021, Yield losses caused by barley yellow dwarf virus-PAV infection in wheat and barley: a three-year field study in South-Eastern Australia, Microorganisms, 9(3): 645. https://doi.org/10.3390/microorganisms9030645 Picard M., Scott-Boyer M., Bodein A., Périn O., and Droit A., 2021, Integration strategies of multi-omics data for machine learning analysis, Computational and Structural Biotechnology Journal, 19: 3735-3746. https://doi.org/10.1016/j.csbj.2021.06.030 Scheurer K., Friedt W., Huth W., Waugh R., and Ordon F., 2001, QTL analysis of tolerance to a German strain of BYDV-PAV in barley (Hordeum vulgare L.), Theoretical and Applied Genetics, 103: 1074-1083. https://doi.org/10.1007/s001220100632 Subramanian I., Verma S., Kumar S., Jere A., and Anamika K., 2020, Multi-omics data integration, interpretation, and its application, Bioinformatics and Biology Insights, 14: 1-24. https://doi.org/10.1177/1177932219899051 Tong C., Jia Y., Hu H., Zeng Z., Chapman B., and Li C., 2024, Pangenome and pantranscriptome as the new reference for gene-family characterization: A case study of basic helix-loop-helix (bHLH) genes in barley, Plant Communications, 6(1): 101190. https://doi.org/10.1016/j.xplc.2024.101190 Wei H.M., 2024, Studying the molecular genetic mechanism of barley stress tolerance using GWAS, Field Crop, 7(1): 9-16. https://doi.org/10.5376/fc.2024.07.0001
RkJQdWJsaXNoZXIy MjQ4ODYzNA==