TGG_2025v16n2

Triticeae Genomics and Genetics, 2025, Vol.16, No.2, 79-91 http://cropscipublisher.com/index.php/tgg 90 Camenzind M., Koller T., Armbruster C., Jung E., Brunner S., Herren G., and Keller B., 2024, Breeding for durable resistance against biotrophic fungal pathogens using transgenes from wheat, Molecular Breeding, 44: 8. https://doi.org/10.1007/s11032-024-01451-2 Carlson A., Letarte J., Chen J., and Kasha K., 2001, Visual screening of microspore-derived transgenic barley (Hordeum vulgare L.) with green-fluorescent protein, Plant Cell Reports, 20: 331-337. https://doi.org/10.1007/s002990100328 Chen Z., Jiang Q., Guo G., Shen Q., Yang J., Wang E., Zhang G., Lu R., and Liu C., 2023, Rapid generation of barley homozygous transgenic lines based on microspore culture: HvPR1 overexpression as an example, International Journal of Molecular Sciences, 24(5): 4945. https://doi.org/10.3390/ijms24054945 Chiu T., Poucet T., and Li Y., 2022, The potential of plant proteins as antifungal agents for agricultural applications, Synthetic and Systems Biotechnology, 7: 1075-1083. https://doi.org/10.1016/j.synbio.2022.06.009 Choi H., Lemaux P., and Cho M., 2003, Long-term stability of transgene expression driven by barley endosperm-specific hordein promoters in transgenic barley, Plant Cell Reports, 21: 1108-1120. https://doi.org/10.1007/s00299-003-0630-9 Fernando W., Oghenekaro A., Tucker J., and Badea A., 2020, Building on a foundation: advances in epidemiology, resistance breeding, and forecasting research for reducing the impact of fusarium head blight in wheat and barley, Canadian Journal of Plant Pathology, 43(4): 495-526. https://doi.org/10.1080/07060661.2020.1861102 Gao D., Abdullah S., Baldwin T., Caspersen A., Williams E., Carlson A., Petersen M., Hu G., Klos K., and Bregitzer P., 2024, Agrobacterium-mediated transfer of the Fusarium graminearum Tri6 gene into barley using mature seed-derived shoot tips as explants, Plant Cell Reports, 43: 40. https://doi.org/10.1007/s00299-023-03129-z Holásková E., Galuszka P., Mičúchová A., Šebela M., Öz M., and Frébort I., 2018, Molecular farming in barley: development of a novel production platform to produce human antimicrobial peptide LL-37, Biotechnology Journal, 13(6): e1700628. https://doi.org/10.1002/biot.201700628 Horvath H., Jensen L., Wong O., Kohl E., Ullrich S., Cochran J., Kannangara C., and Von Wettstein D., 2001, Stability of transgene expression, field performance and recombination breeding of transformed barley lines, Theoretical and Applied Genetics, 102: 1-11. https://doi.org/10.1007/s001220051612 Iimure T., Kihara M., Sato K., and Ogushi K., 2015, Purification of barley dimeric α-amylase inhibitor-1 (BDAI-1) and avenin-like protein-a (ALP) from beer and their impact on beer foam stability, Food Chemistry, 172: 257-264. https://doi.org/10.1016/j.foodchem.2014.09.012 Li T., Li L., Du F., Sun L., Shi J., Long M., and Chen Z., 2021, Activity and mechanism of action of antifungal peptides from microorganisms: a review, Molecules, 26(11): 3438. https://doi.org/10.3390/molecules26113438 Martínez-Culebras P., Gandía M., Garrigues S., Marcos J., and Manzanares P., 2021, Antifungal peptides and proteins to control toxigenic fungi and mycotoxin biosynthesis, International Journal of Molecular Sciences, 22(24): 13261. https://doi.org/10.3390/ijms222413261 Mendes G.R.L., Alves C.L., Cavalheiro P.L., Bretanha C.C., Pagnussatt F.A., and Badiale-Furlong E., 2015, α-Amylase inhibitors from wheat against development and toxigenic potential of Fusarium verticillioides, Cereal Chemistry, 92(6): 611-616. https://doi.org/10.1094/CCHEM-11-14-0227-R Milne R., Dibley K., Schnippenkoetter W., Mascher M., Lui A., Wang L., Lo C., Ashton A., Ryan P., and Lagudah E., 2018, The wheat Lr67 gene from the sugar transport protein 13 family confers multipathogen resistance in barley, Plant Physiology, 179(4): 1285-1297. https://doi.org/10.1104/pp.18.00945 Mirzaee M., Holásková E., Mičúchová A., Kopečný D.J., Osmani Z., and Frébort I., 2021, Long-lasting stable expression of human LL-37 antimicrobial peptide in transgenic barley plants, Antibiotics, 10(8): 898. https://doi.org/10.3390/antibiotics10080898 Oğuz A., and Karakaya A., 2021, Genetic diversity of barley foliar fungal pathogens, Agronomy, 11: 434. https://doi.org/10.3390/AGRONOMY11030434 Poznański P., Hameed A., Dmochowska-Boguta M., Bryła M., and Orczyk W., 2023, Low molecular weight and high deacetylation degree chitosan batch alleviates pathogenesis, toxin accumulation, and Fusarium gene regulation in barley leaf pathosystem, International Journal of Molecular Sciences, 24(16): 12894. https://doi.org/10.3390/ijms241612894 Rahnamaeian M., Langen G., Imani J., Khalifa W., Altincicek B., von Wettstein D., Kogel K.H., and Vilcinskas A., 2009, Insect peptide metchnikowin confers on barley a selective capacity for resistance to fungal ascomycete pathogens, Journal of Experimental Botany, 60(14): 4105-4114. https://doi.org/10.1093/jxb/erp240 Risk J., Selter L., Chauhan H., Krattinger S., Kumlehn J., Hensel G., Viccars L., Richardson T., Buesing G., Troller A., Lagudah E., and Keller B., 2013, The wheat Lr34 gene provides resistance against multiple fungal pathogens in barley, Plant Biotechnology Journal, 11(7): 847-854. https://doi.org/10.1111/pbi.12077

RkJQdWJsaXNoZXIy MjQ4ODYzNA==