Triticeae Genomics and Genetics, 2025, Vol.16, No.2, 72-78 http://cropscipublisher.com/index.php/tgg 78 Yang Z., Bai Z., Li X., Wang P., Wu Q., Yang L., Li L., and Li X., 2012, SNP identification and allelic-specific PCR markers development for TaGW2, a gene linked to wheat kernel weight, Theoretical and Applied Genetics, 125: 1057-1068. https://doi.org/10.1007/s00122-012-1895-6 Zhai H., Feng Z., Du X., Song Y., Liu X., Qi Z., Song L., Li J., Li L., Peng H., Hu Z., Yao Y., Xin M., Xiao S., Sun Q., and Ni Z., 2017, A novel allele of TaGW2-A1 is located in a finely mapped QTL that increases grain weight but decreases grain number in wheat (Triticum aestivum L.), Theoretical and Applied Genetics, 131: 539-553. https://doi.org/10.1007/s00122-017-3017-y Zhang D., Zhang X., Xu W., Hu T., Ma, J., Zhang Y., Hou J., Hao C., Zhang X., and Li T., 2022, TaGW2L, a GW2-like RING finger E3 ligase, positively regulates heading date in common wheat (Triticum aestivum L.), The Crop Journal, 10(4): 972-979. https://doi.org/10.1016/j.cj.2021.12.002 Zhang Y., Li D., Zhang D., Zhao X., Cao X., Dong L., Liu J., Chen K., Zhang H., Gao C., and Wang D., 2018, Analysis of the functions of TaGW2 homoeologs in wheat grain weight and protein content traits, The Plant Journal, 94: 857-866. https://doi.org/10.1111/tpj.13903 Zhang Z., Hua L., Gupta A., Tricoli D., Edwards K., Yang B., and Li W., 2019, Development of an Agrobacterium‐delivered CRISPR/Cas9 system for wheat genome editing, Plant Biotechnology Journal, 17: 1623-1635. https://doi.org/10.1111/pbi.13088 Zhao S., Han X., Zhu Y., Han Y., Liu H., Chen Z., Li H., Wang D., Tian C., Yuan Y., Guo Y., Si X., Wang D., and Ji X., 2024, CRISPR/CasΦ2-mediated gene editing in wheat and rye, Journal of Integrative Plant Biology, 66(4): 638-641. https://doi.org/10.1111/jipb.13624
RkJQdWJsaXNoZXIy MjQ4ODYzNA==