Triticeae Genomics and Genetics, 2025, Vol.16, No.2, 63-71 http://cropscipublisher.com/index.php/tgg 71 Soud N., Fahmy A., El-Sharkawy A., and Hussein M., 2024, Molecular and physiological insights of salt tolerance in hulled barley (Hordeum vulgare L. var. nudum), Egyptian Pharmaceutical Journal, 23(3): 491-497. https://doi.org/10.4103/epj.epj_310_23 Spindel J., Begum H., Akdemir D., Collard B., Redoña E., Jannink J., Jannink J., and McCouch S., 2016, Genome-wide prediction models that incorporate de novo GWAS are a powerful new tool for tropical rice improvement, Heredity, 116: 395-408. https://doi.org/10.1038/hdy.2015.113 Spindel J., Begum H., Akdemir D., Virk P., Collard B., Redoña E., Atlin G., Jannink J., and McCouch S., 2015, Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines, PLoS Genetics, 11(6): e1005350. https://doi.org/10.1371/journal.pgen.1004982 Thabet S., and Alqudah A., 2023, New genetic insights into improving barley salt tolerance by regulating mineral accumulation, cellular ion homeostasis, and membrane trafficking, Environmental and Experimental Botany, 208: 105252. https://doi.org/10.1016/j.envexpbot.2023.105252 Tu Y., Fu L., Wang F., Wu D., Shen Q., and Zhang G., 2021, GWAS and transcriptomic integrating analysis reveals key salt-responding genes controlling Na+ content in barley roots, Plant Physiology and Biochemistry, 167: 596-606. https://doi.org/10.1016/j.plaphy.2021.08.038 Việt N., Bullet L., Dolstra O., Malosetti M., Benjamin B., Bullet K., Graner A., Visser R., Van Der Linden B., Springer-Verlag Ó., and Heidelberg B., 2013, Association mapping of salt tolerance in barley (Hordeum vulgare L.), Theoretical and Applied Genetics, 126: 2335-2351. https://doi.org/10.1007/s00122-013-2139-0 Wang H., Li C., Li J., Zhang R., An X., Yuan C., Guo T., and Yue Y., 2024, Genomic selection for weaning weight in alpine merino sheep based on GWAS prior marker information, Animals, 14(13): 1904. https://doi.org/10.3390/ani14131904 Wu D., Cai S., Chen M., Ye L., Chen Z., Zhang H., Dai F., Wu F., and Zhang G., 2013, Tissue metabolic responses to salt stress in wild and cultivated barley, PLoS ONE, 8(1): e55431. https://doi.org/10.1371/journal.pone.0055431 Xu H., Chen H., Halford N., Xu R., He T., Yang B., Zhou L., Guo H., and Liu C., 2025, Ion homeostasis and coordinated salt tolerance mechanisms in a barley (Hordeum vulgare L.) doubled haploid line, BMC Plant Biology, 25: 52. https://doi.org/10.1186/s12870-024-06033-0 Xu T., Meng S., Zhu X., Di J., Zhu Y., Yang X., and Yan W., 2023, Integrated GWAS and transcriptomic analysis reveal the candidate salt-responding genes regulating Na+/K+ balance in barley (Hordeum vulgare L.), Frontiers in Plant Science, 13: 1004477. https://doi.org/10.3389/fpls.2022.1004477 Yildiz M., and Acar O., 2022, Determination of salt tolerance of some barley varieties based on physiological and biochemical properties, International Journal of Innovative Approaches in Agricultural Research, 6(4): 289-302. https://doi.org/10.29329/ijiaar.2022.506.1 Zhang Y., Zhang M., Ye J., Xu Q., Feng Y., Xu S., Hu D., Wei X., Hu P., and Yang Y., 2023, Integrating genome-wide association study into genomic selection for the prediction of agronomic traits in rice (Oryza sativa L.), Molecular Breeding, 43: 81. https://doi.org/10.1007/s11032-023-01423-y
RkJQdWJsaXNoZXIy MjQ4ODYzNA==