Triticeae Genomics and Genetics, 2025, Vol.16, No.2, 63-71 http://cropscipublisher.com/index.php/tgg 70 Chang H., Wu T., Shalmani A., Xu L., Li C., Zhang W., and Pan R., 2024, Heat shock protein HvHSP16.9 from wild barley enhances tolerance to salt stress, Physiology and Molecular Biology of Plants, 30(5): 687-704. https://doi.org/10.1007/s12298-024-01455-4 Eldakkak E., and El-Shourbagy M., 2023, Effect of polyamine precursors and antioxidants on growth and metabolism of salt-stressed barley, F1000Research, 12: 262. https://doi.org/10.12688/f1000research.130979.2 Gharaghanipor N., Arzani A., Rahimmalek M., and Ravash R., 2022, Physiological and transcriptome indicators of salt tolerance in wild and cultivated barley, Frontiers in Plant Science, 13: 819282. https://doi.org/10.3389/fpls.2022.819282 Hazzouri K., Khraiwesh B., Amiri K., Pauli D., Blake T., Shahid M., Mullath S., Nelson D., Mansour A., Salehi-Ashtiani K., Purugganan M., and Masmoudi K., 2018, Mapping of HKT1;5 gene in barley using gwas approach and its implication in salt tolerance mechanism, Frontiers in Plant Science, 9: 156. https://doi.org/10.3389/fpls.2018.00156 He J., Zhao X., Laroche A., Lu Z., Liu H., and Li Z., 2014, Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding, Frontiers in Plant Science, 5: 484. https://doi.org/10.3389/fpls.2014.00484 Hu Y., and Schmidhalter U., 2023, Opportunity and challenges of phenotyping plant salt tolerance, Trends in plant science, 28(5): 552-566. https://doi.org/10.1016/j.tplants.2022.12.010 Huang J., and Lin X.F., 2024, Advances in animal disease resistance research: discoveries of genetic markers for disease resistance in cattle through GWAS, Bioscience Evidence, 14(1): 24-31. https://doi.org/10.5376/be.2024.14.0004 Huang S., Spielmeyer W., Lagudah E., and Munns R., 2008, Comparative mapping of HKT genes in wheat, barley, and rice, key determinants of Na+ transport, and salt tolerance, Journal of Experimental Botany, 59(4): 927-937. https://doi.org/10.1093/jxb/ern033 Kumar R., Das S., Choudhury B., Kumar A., Prakash N., Verma R., Chakraborti M., Devi A., Bhattacharjee B., Das R., Das B., Devi H., Das B., Rawat S., and Mishra V., 2024, Advances in genomic tools for plant breeding: harnessing DNA molecular markers, genomic selection, and genome editing, Biological Research, 57: 80. https://doi.org/10.1186/s40659-024-00562-6 Kumar V., Singh A., Mithra S., Krishnamurthy S., Parida S., Jain S., Tiwari K., Kumar P., Rao A., Sharma S., Khurana J., Singh N., and Mohapatra T., 2015, Genome-wide association mapping of salinity tolerance in rice (Oryza sativa), DNA Research, 22(2): 133-145. https://doi.org/10.1093/dnares/dsu046 Li B., 2020, Identification of genes conferring plant salt tolerance using GWAS: current success and perspectives, Plant & Cell Physiology, 61(8): 1419-1426. https://doi.org/10.1093/pcp/pcaa073 Li H., Su G., Jiang L., and Bao Z., 2017, An efficient unified model for genome-wide association studies and genomic selection, Genetics, Selection, Evolution, 49: 64. https://doi.org/10.1186/s12711-017-0338-x Liu N., Guan M., B., Chu H., Tian G., Zhang Y., Li C., Zheng W., and Wang X., 2024, Unraveling genetic mysteries: a comprehensive review of GWAS and DNA insights in animal and plant pathosystems, International Journal of Biological Macromolecules, 285: 138216. https://doi.org/10.1016/j.ijbiomac.2024.138216 Meuwissen T., Eikje L., and Gjuvsland A., 2024, GWABLUP: genome-wide association assisted best linear unbiased prediction of genetic values, Genetics, Selection, Evolution, 56: 17. https://doi.org/10.1186/s12711-024-00881-y Mwando E., Han Y., Angessa T., Zhang X., and Li C., 2021, Fine-mapping and characterisation of genes on barley (Hordeum vulgare) chromosome 2H for salinity stress tolerance during germination, The Crop Journal, 10(3): 754-766. https://doi.org/10.1016/j.cj.2021.10.008 Mwando E., Han Y., Angessa T., Zhou G., Hill C., Zhang X., and Li C., 2020, Genome-wide association study of salinity tolerance during germination in barley (Hordeum vulgare L.), Frontiers in Plant Science, 11: 118. https://doi.org/10.3389/fpls.2020.00118 Ouertani R., Abid G., Karmous C., Chikha M., Boudaya O., Mahmoudi H., Mejri S., Jansen R., and Ghorbel A., 2021, Evaluating the contribution of osmotic and oxidative stress components on barley growth under salt stress, AoB Plants, 13(4): plab034. https://doi.org/10.1093/AOBPLA/PLAB034 Pang Z., Wang W., Huang P., Zhang H., Zhang S., Yang P., Qiao L., Liu J., Pan Y., Yang K., and Liu W., 2025, Enhancing genomic prediction accuracy with a single-step genomic best linear unbiased prediction model integrating genome-wide association study results, Animals, 15(9): 1268. https://doi.org/10.3390/ani15091268 Sadiq Q., Nazim M., Haq T., Fatima M., Hussain A., Ali M., Mathpal B., and Alwahibi M., 2024, Salt stress effects on growth, physiology, and ionic concentrations in hydroponically grown barley genotypes, Journal of King Saud University-Science, 36: 103448. https://doi.org/10.1016/j.jksus.2024.103448 Sonia, Kaur V., Yadav S., Arya S., Aravind J., Jacob S., and Gautam R., 2023, Development and evaluation of barley mini-core collection for salinity tolerance and identification of novel haplotypic variants for HvRAF, Plant and Soil, 497: 317-337. https://doi.org/10.1007/s11104-023-06397-6
RkJQdWJsaXNoZXIy MjQ4ODYzNA==