TGG_2025v16n2

Triticeae Genomics and Genetics, 2025, Vol.16, No.2, 54-62 http://cropscipublisher.com/index.php/tgg 62 Huang F., Du X.Y., Zou S.K., Wang L., and Han Y.L., 2024, Advancements in wheat hybridization: overcoming biological barriers, Bioscience Evidence, 14(5): 195-205. https://doi.org/10.5376/be.2024.14.0021 Long C.Y., Hua W., Zhu J.H., and Fan M., 2024, Developing disease-resistant wheat varieties through genomic approaches, Molecular Plant Breeding, 15(6): 403-416. http://dx.doi.org/10.5376/mpb.2024.15.0038 Mangal V., Verma L., Singh S., Saxena K., Roy A., Karn A., Rohit R., Kashyap S., Bhatt A., and Sood S., 2024, Triumphs of genomic-assisted breeding in crop improvement, Heliyon, 10(15): e35513. https://doi.org/10.1016/j.heliyon.2024.e35513 Montenegro J., Golicz A., Bayer P., Hurgobin B., Lee H., Chan C., Visendi P., Lai K., Doležel J., Batley J., and Edwards D., 2017, The pangenome of hexaploid bread wheat, The Plant Journal, 90: 1007-1013. https://doi.org/10.1111/tpj.13515 Petereit J., Bayer P., Thomas W., Fernandez C., Amas J., Zhang Y., Batley J., and Edwards D., 2022, Pangenomics and crop genome adaptation in a changing climate, Plants, 11(15): 1949. https://doi.org/10.3390/plants11151949 Przewieslik-Allen A., Wilkinson P., Burridge A., Winfield M., Dai X., Beaumont M., King J., Yang C., Griffiths S., Wingen L., Horsnell R., Bentley A., Shewry P., Barker G., and Edwards K., 2021, The role of gene flow and chromosomal instability in shaping the bread wheat genome, Nature Plants, 7: 172-183. https://doi.org/10.1038/s41477-020-00845-2 Schreiber M., Jayakodi M., Stein N., and Mascher M., 2024, Plant pangenomes for crop improvement, biodiversity and evolution, Nature Reviews Genetics, 25: 563-577. https://doi.org/10.1038/s41576-024-00691-4 Tiwari V., Saripalli G., Sharma P., and Poland J., 2024, Wheat genomics: genomes, pangenomes, and beyond, Trends in Genetics, 40(11): 982-992. https://doi.org/10.1016/j.tig.2024.07.004 Walkowiak S., Gao L., Monat C., Haberer G., Kassa M., Brinton J., Ramirez-Gonzalez R., Kolodziej M., Delorean E., Thambugala D., Klymiuk V., Byrns B., Gundlach H., Bandi V., Siri J., Nilsen K., Aquino C., Himmelbach A., Copetti D., Ban T., Venturini L., Bevan M., Clavijo B., Koo D., Ens J., Wiebe K., N’Diaye A., Fritz A., Gutwin C., Fiebig A., Fosker C., Fu B., Accinelli G., Gardner K., Fradgley N., Gutierrez-Gonzalez J., Halstead-Nussloch G., Hatakeyama M., Koh C., Deek J., Costamagna A., Fobert P., Heavens D., Kanamori H., Kawaura K., Kobayashi F., Krasileva K., Kuo T., McKenzie N., Murata K., Nabeka Y., Paape T., Padmarasu S., Percival-Alwyn L., Kagale S., Scholz U., Sese J., Juliana P., Singh R., Shimizu‐Inatsugi R., Swarbreck D., Cockram J., Budak H., Tameshige T., Tanaka T., Tsuji H., Wright J., Wu J., Steuernagel B., Small I., Cloutier S., Keeble-Gagnère G., Muehlbauer G., Tibbets J., Nasuda S., Melonek J., Hucl P., Sharpe A., Clark M., Legg E., Bharti A., Langridge P., Hall A., Uauy C., Mascher M., Krattinger S., Handa H., Shimizu K., Distelfeld A., Chalmers K., Keller B., Mayer K., Poland J., Stein N., McCartney C., Spannagl M., Wicker T., and Pozniak C., 2020, Multiple wheat genomes reveal global variation in modern breeding, Nature, 588: 277-283. https://doi.org/10.1038/s41586-020-2961-x White B., Lux T., Rusholme-Pilcher R., Juhász A., Kaithakottil G., Duncan S., Simmonds J., Rees H., Wright J., Colmer J., Ward S., Joynson R., Coombes B., Irish N., Henderson S., Barker T., Chapman H., Catchpole L., Gharbi K., Bose U., Okada M., Handa H., Nasuda S., Shimizu K., Gundlach H., Lang D., Naamati G., Legg E., Bharti A., Colgrave M., Haerty W., Uauy C., Swarbreck D., Borrill P., Poland J., Krattinger S., Stein N., Mayer K., Pozniak C., 10+ Wheat Genome Project, Spannagl M., and Hall A., 2024, De novo annotation of the wheat pan-genome reveals complexity and diversity within the hexaploid wheat pan-transcriptome, bioRxiv, 574802: 1-29. https://doi.org/10.1101/2024.01.09.574802 Zanini S., Bayer P., Wells R., Snowdon R., Batley J., Varshney R., Nguyen H., Edwards D., and Golicz A., 2021, Pangenomics in crop improvement-from coding structural variations to finding regulatory variants with pangenome graphs, The Plant Genome, 15(1): e20177. https://doi.org/10.1002/tpg2.20177 Zhang Z., Liu D., Li B., Wang W., Zhang J., Xin M., Hu Z., Liu J., Du J., Peng H., Hao C., Zhang X., Ni Z., Sun Q., Guo W., and Yao Y., 2024, A k-mer-based pangenome approach for cataloging seed-storage-protein genes in wheat to facilitate genotype-to-phenotype prediction and improvement of end-use quality, Molecular Plant, 17(7): 1038-1053. https://doi.org/10.1016/j.molp.2024.05.006

RkJQdWJsaXNoZXIy MjQ4ODYzNA==