TGG_2024v15n5

Triticeae Genomics and Genetics, 2024, Vol.15, No.5, 266-276 http://cropscipublisher.com/index.php/tgg 275 Hanak T., Janjić J., Hay F., and Brinch-Pedersen H., 2023, Genome editing to re-domesticate and accelerate use of barley crop wild relatives, Frontiers in Sustainable Food Systems, 7: 1331577. https://doi.org/10.3389/fsufs.2023.1331577 Hassan A., Amjad S., Saleem M., Yasmin H., Imran M., Riaz M., Ali Q., Joyia F.M., Ahmed S., Ali S., Alsahli A., and Alyemeni M., 2021, Foliar application of ascorbic acid enhances salinity stress tolerance in barley (Hordeum vulgare L.) through modulation of morpho-physio-biochemical attributes, ions uptake, osmo-protectants and stress response genes expression, Saudi Journal of Biological Sciences, 28: 4276-4290. https://doi.org/10.1016/j.sjbs.2021.03.045 Hill C., Angessa T., Zhang X., Chen K., Zhou G., Tan C., Wang P., Westcott S., and Li C., 2021, A global barley panel revealing genomic signatures of breeding in modern Australian cultivars, The Plant Journal : for Cell and Molecular Biology, 106(2): 419-434. https://doi.org/10.1111/tpj.15173 Jeanty A., Bouby L., Bonhomme V., Balfourier F., Debiton C., Dham C., Ivorra S., Ros J., and Evin A., 2023, Barley systematics and taxonomy foreseen by seed morphometric variation, PLOS ONE, 18(5): e0285195. https://doi.org/10.1371/journal.pone.0285195 Kerr E., Fox G., and Schulz B., 2023, Proteomics and metabolomics reveal that an abundant α-glucosidase drives sorghum fermentability for beer brewing, Journal of Proteome Research, 22(11): 3596-3606. https://doi.org/10.1021/acs.jproteome.3c00436 Kim J., Kim J., Choi E., Lee S., Kwon Y., Hong K., and Kim W., 2014, Multivariate analysis for feasibility of Korean six‐row barleys for beer brewing, Journal of The Institute of Brewing, 120: 371-378. https://doi.org/10.1002/JIB.168 Kim J., Kim J., Lee S., Hong K., Kwon Y., Park J., and Kim W., 2013, Characterization of fermentation kinetics of beer made of korean 6 row-barley, Food Engineering Progress, 17: 189-197. https://doi.org/10.13050/FOODENGPROG.2013.17.3.189 Kok Y., Ye L., Muller J., Ow D., and Bi X., 2018, Brewing with malted barley or raw barley: what makes the difference in the processes?, Applied Microbiology and Biotechnology, 103: 1059-1067. https://doi.org/10.1007/s00253-018-9537-9 Leipe C., Sergusheva E., Müller S., Spengler R., Goslar T., Kato H., Wagner M., Weber A., and Tarasov P., 2017, Barley (Hordeum vulgare) in the Okhotsk culture (5th-10th century AD) of northern Japan and the role of cultivated plants in hunter-gatherer economies, PLoS ONE, 12(3): e0174397. https://doi.org/10.1371/journal.pone.0174397 Liu L., Wang J., Rosenberg D., Zhao H., Lengyel G., and Nadel D., 2018, Fermented beverage and food storage in 13,000 y-old stone mortars at Raqefet Cave, Israel: Investigating Natufian ritual feasting, Journal of Archaeological Science: Reports, 21: 783-793. https://doi.org/10.1016/J.JASREP.2018.08.008 Mascher M., Schuenemann V., Davidovich U., Marom N., Himmelbach A., Hübner S., Korol A., David M., Reiter E., Riehl S., Schreiber M., Vohr S., Green R., Dawson I., Russell J., Kilian B., Muehlbauer G., Waugh R., Fahima T., Krause J., Weiss E., and Stein N., 2016, Genomic analysis of 6 000-year-old cultivated grain illuminates the domestication history of barley, Nature Genetics, 48: 1089-1093. https://doi.org/10.1038/ng.3611 Milanesi C., Vignani R., Scali M., Faleri C., Donne M., Cresti M., and Costantini L., 2021, A comparison of aleurone cells in centenarian African and contemporary barley seeds to identify the geographic origin, Comptes Rendus Palevol, 20(43): 887-896. https://doi.org/10.5852/cr-palevol2021v20a43 Mrízová K., Holásková E., Öz M., Jiskrová E., Frébort I., and Galuszka P., 2014, Transgenic barley: a prospective tool for biotechnology and agriculture, Biotechnology Advances, 32(1): 137-157. https://doi.org/10.1016/j.biotechadv.2013.09.011 Nevo E., 2013, Evolution of wild barley and barley improvement, In: Zhang G., Li C., and Liu X., (eds) Advance in Barley Sciences, Springer, Dordrecht, pp.1-23. https://doi.org/10.1007/978-94-007-4682-4_1 Palmer S., Moore J., Clapham A., Rose P., and Allaby R., 2009, Archaeogenetic evidence of ancient nubian barley evolution from six to two-row indicates local adaptation, PLoS ONE, 4(7): e6301. https://doi.org/10.1371/journal.pone.0006301 Pankin A., Altmüller J., Becker C., and Korff M., 2018, Targeted resequencing reveals genomic signatures of barley domestication, The New Phytologist, 218: 1247-1259. https://doi.org/10.1111/nph.15077 Piperno D., Weiss E., Holst I., and Nadel D., 2004, Processing of wild cereal grains in the Upper Palaeolithic revealed by starch grain analysis, Nature, 430: 670-673. https://doi.org/10.1038/nature02734 Pourkheirandish M., Hensel G., Kilian B., Senthil N., Chen G., Sameri M., Azhaguvel P., Sakuma S., Dhanagond S., Sharma R., Mascher M., Himmelbach A., Gottwald S., Nair S., Tagiri A., Yukuhiro F., Nagamura Y., Kanamori H., Matsumoto T., Willcox G., Middleton C., Wicker T., Walther A., Waugh R., Fincher G., Stein N., Kumlehn J., Sato K., and Komatsuda T., 2015, Evolution of the grain dispersal system in barley, Cell, 162: 527-539. https://doi.org/10.1016/j.cell.2015.07.002

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==