Triticeae Genomics and Genetics, 2024, Vol.15, No.5, 255-265 http://cropscipublisher.com/index.php/tgg 265 Rahaie M., Xue G., Naghavi M., Alizadeh H., and Schenk P., 2010, A MYB gene from wheat (Triticum aestivumL.) is up-regulated during salt and drought stresses and differentially regulated between salt-tolerant and sensitive genotypes, Plant Cell Reports, 29: 835-844. https://doi.org/10.1007/s00299-010-0868-y Saad A., Li X., Li H., Huang T., Gao C., Guo M., Cheng W., Zhao G., and Liao Y., 2013, A rice stress-responsive NACgene enhances tolerance of transgenic wheat to drought and salt stresses, Plant Science : an International Journal of Experimental Plant Biology, 203-204: 33-40. https://doi.org/10.1016/j.plantsci.2012.12.016 Samantara, K., Shiv, A., Sousa, L., Sandhu, K., Priyadarshini, P., and Mohapatra, S., 2021, A comprehensive review on epigenetic mechanisms and application of epigenetic modifications for crop improvement, Environmental and Experimental Botany, 188: 104479. https://doi.org/10.1016/j.envexpbot.2021.104479 Saraswat S., Yadav A., Sirohi P., and Singh N., 2017, Role of epigenetics in crop improvement: water and heat stress, Journal of Plant Biology, 60: 231-240. https://doi.org/10.1007/s12374-017-0053-8 Saravana Kumar M.S., Wang Y., Zhang X., Cheng H., Sun L., He S., and Hao F., 2020, Redox components: key regulators of epigenetic modifications in plants, International Journal of Molecular Sciences, 21(4): 1419. https://doi.org/10.3390/ijms21041419 Shafiq S., and Khan A., 2015, Plant epigenetics and crop improvement, In: Barh D., Khan M., Davies E., (eds), PlantOmics: The Omics of Plant Science, Springer, New Delhi, pp.157-179. https://doi.org/10.1007/978-81-322-2172-2_6 Shewry P., and Hey S., 2015, The contribution of wheat to human diet and health, Food and Energy Security, 4: 178-202. https://doi.org/10.1002/fes3.64 Shiferaw B., Smale M., Braun H., Duveiller E., Reynolds M., and Muricho G., 2013, Crops that feed the world 10. past successes and future challenges to the role played by wheat in global food security, Food Security, 5: 291-317. https://doi.org/10.1007/s12571-013-0263-y Shrawat A., and Armstrong C., 2018, Development and application of genetic engineering for wheat improvement, Critical Reviews in Plant Sciences, 37: 335-421. https://doi.org/10.1080/07352689.2018.1514718 Springer N., and Schmitz R., 2017, Exploiting induced and natural epigenetic variation for crop improvement, Nature Reviews Genetics, 18: 563-575. https://doi.org/10.1038/nrg.2017.45 Springer N., 2013, Epigenetics and crop improvement, Trends in Genetics: TIG, 29(4): 241-247. https://doi.org/10.1016/j.tig.2012.10.009 Tonosaki K., Fujimoto R., Dennis E., Raboy V., and Osabe K., 2022, Will epigenetics be a key player in crop breeding?, Frontiers in Plant Science, 13: 958350. https://doi.org/10.3389/fpls.2022.958350 Varotto S., Tani E., Abraham E., Krugman T., Kapazoglou A., Melzer R., Radanović A., and Miladinović D., 2020, Epigenetics: possible applications in climate-smart crop breeding, Journal of Experimental Botany, 71: 5223-5236. https://doi.org/10.1093/jxb/eraa188 Wang M., Li Z., Zhang Y., Zhang Y., Xie Y., Ye L., Zhuang Y., Lin K., Zhao F., Guo J., Teng W., Zhang W., Tong Y., Xue Y., and Zhang Y., 2021, An atlas of wheat epigenetic regulatory elements reveals subgenome divergence in the regulation of development and stress responses, The Plant Cell, 33(4): 865-881. https://doi.org/10.1093/plcell/koab028 Ye H., Qiao L., Guo H., Guo L., Ren F., Bai J., and Wang Y., 2021, Genome-wide identification of wheat WRKY gene family reveals that TaWRKY75-a is referred to drought and salt resistances, Frontiers in Plant Science, 12: 663118. https://doi.org/10.3389/fpls.2021.663118 Yu J., Xu F., Wei Z., Zhang X., Chen T., and Pu L., 2020, Epigenomic landscape and epigenetic regulation in maize, Theoretical and Applied Genetics, 133: 1467-1489. https://doi.org/10.1007/s00122-020-03549-5 Yu M., Yu Y., Guo S., Zhang M., Li N., Zhang S., Zhou H., Wei F., Song T., Cheng J., Fan Q., Shi C., Feng W., Wang Y., Xiang J., and Zhang X., 2022, Identification of TaBADH-A1 allele for improving drought resistance and salt tolerance in wheat (Triticum aestivumL.), Frontiers in Plant Science, 13: 942359. https://doi.org/10.3389/fpls.2022.942359 Zhang Y., Andrews H., Eglitis-Sexton J., Godwin I., Tanurdžić M., and Crisp P., 2022, Epigenome guided crop improvement: current progress and future opportunities, Emerging Topics in Life Sciences, 6: 141-151. https://doi.org/10.1042/ETLS20210258
RkJQdWJsaXNoZXIy MjQ4ODYzNQ==