TGG_2024v15n5

Triticeae Genomics and Genetics, 2024, Vol.15, No.5, 255-265 http://cropscipublisher.com/index.php/tgg 264 Ferreira M., Rocha A., Nascimento F., Oliveira W., Soares J., Rebouças T., Lino L., Haddad F., Ferreira C., Santos-Serejo J., Fernández J., and Amorim E., 2023, The role of somaclonal variation in plant genetic improvement: a systematic review, Agronomy, 13(3): 730. https://doi.org/10.3390/agronomy13030730 Fu C., 2024, Application of genome-wide association study in crop disease resistance breeding, Field Crop, 7(1): 1-8. Gallusci P., Dai Z., Génard M., Gauffretau A., Leblanc-Fournier N., Richard-Molard C., Vile D., and Brunel-Muguet S., 2017, Epigenetics for plant improvement: current knowledge and modeling avenues, Trends in Plant Science, 22(7): 610-623. https://doi.org/10.1016/j.tplants.2017.04.009 Greer E., and Shi Y., 2012, Histone methylation: a dynamic mark in health, disease and inheritance, Nature Reviews Genetics, 13: 343-357. https://doi.org/10.1038/nrg3173 Gupta C., and Salgotra R., 2022, Epigenetics and its role in effecting agronomical traits, Frontiers in Plant Science, 13: 925688. https://doi.org/10.3389/fpls.2022.925688 Huang W.Z., 2024, The current situation and future of using GWAS strategies to accelerate the improvement of crop stress resistance traits, Molecular Plant Breeding, 15(2): 52-62. https://doi.org/10.5376/mpb.2024.15.0007 Jiang Y., N’Diaye A., Koh C., Quilichini T., Shunmugam A., Kirzinger M., Konkin D., Bekkaoui Y., Sari E., Pasha A., Esteban E., Provart N., Higgins J., Rozwadowski K., Sharpe A., Pozniak C., and Kagale S., 2023, The coordinated regulation of early meiotic stages is dominated by non-coding RNAs and stage-specific transcription in wheat, The Plant Journal : for Cell and Molecular Biology, 114(1): 209-224. https://doi.org/10.1111/tpj.16125 Kakoulidou I., Avramidou E., Baránek M., Brunel-Muguet S., Farrona S., Johannes F., Kaiserli E., Lieberman-Lazarovich M., Martinelli F., Mladenov V., Testillano P., Vassileva V., and Maury S., 2021, Epigenetics for crop improvement in times of global change, Biology, 10(8): 766. https://doi.org/10.3390/biology10080766 Kapazoglou A., Ganopoulos I., Tani E., and Tsaftaris A., 2018, Epigenetics, epigenomics and crop improvement, Advances in Botanical Research, 86: 287-324. https://doi.org/10.1016/bs.abr.2017.11.007 Kelly T., Carvalho D., and Jones P., 2010, Epigenetic modifications as therapeutic targets, Nature Biotechnology, 28: 1069-1078. https://doi.org/10.1038/nbt.1678 Khalid A., Hameed A., and Tahir M., 2023, Wheat quality: a review on chemical composition, nutritional attributes, grain anatomy, types, classification, and function of seed storage proteins in bread making quality, Frontiers in Nutrition, 10: 1053196. https://doi.org/10.3389/fnut.2023.1053196 Kong L., Liu Y., Wang X., and Chang C., 2020, Insight into the role of epigenetic processes in abiotic and biotic stress response in wheat and barley, International Journal of Molecular Sciences, 21(4): 1480. https://doi.org/10.3390/ijms21041480 Kumar S., Beena A., Awana M., and Singh A., 2017a, Salt-induced tissue-specific cytosine methylation downregulates expression of HKT genes in contrasting wheat (Triticum aestivumL.) genotypes, DNA and Cell Biology, 36: 283-294. https://doi.org/10.1089/dna.2016.3505 Kumar S., Beena A., Awana M., and Singh A., 2017b, Physiological, biochemical, epigenetic and molecular analyses of wheat (Triticum aestivum) genotypes with contrasting salt tolerance, Frontiers in Plant Science, 8: 1151. https://doi.org/10.3389/fpls.2017.01151 Kumar S., and Mohapatra T., 2021, Dynamics of DNA methylation and its functions in plant growth and development, Frontiers in Plant Science, 12: 596236. https://doi.org/10.3389/fpls.2021.596236 Latutrie M., Gourcilleau D., and Pujol B., 2019, Epigenetic variation for agronomic improvement: an opportunity for vegetatively propagated crops, American Journal of Botany, 106: 1281-1284. https://doi.org/10.1002/ajb2.1357 Li S., Zhang C., Li J., Yan L., Wang N., and Xia L., 2021, Present and future prospects for wheat improvement through genome editing and advanced technologies, Plant Communications, 2 (4): 100211. https://doi.org/10.1016/j.xplc.2021.100211 Liu Y., Wang J., Liu B., and Xu Z., 2022, Dynamic regulation of DNA methylation and histone modifications in response to abiotic stresses in plants, Journal of Integrative Plant Biology, 64(12): 2252-2274. https://doi.org/10.1111/jipb.13368 Molina-Serrano D., Schiza V., and Kirmizis A., 2013, Cross-talk among epigenetic modifications: lessons from histone arginine methylation, Biochemical Society transactions, 41(3): 751-759. https://doi.org/10.1042/BST20130003 Pang Y., Liu C., Wang D., Amand P., Bernardo A., Li W., He F., Li L., Wang L., Yuan X., Dong L., Su Y., Zhang H., Zhao M., Liang Y., Jia H., Shen X., Lu Y., Jiang H., Wu Y., Li A., Wang H., Kong L., Bai G., and Liu, S., 2020, High-resolution genome-wide association study identifies genomic regions and candidate genes for important agronomic traits in wheat, Molecular Plant, 13(9): 1311-1327. https://doi.org/10.1016/j.molp.2020.07.008 Qin Y., Tian Y., and Liu X., 2015, A wheat salinity-induced WRKY transcription factor TaWRKY93 confers multiple abiotic stress tolerance in Arabidopsis thaliana.. Biochemical and biophysical research communications, 464(2): 428-433. https://doi.org/10.1016/j.bbrc.2015.06.128

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==