TGG_2024v15n5

Triticeae Genomics and Genetics, 2024, Vol.15, No.5, 244-254 http://cropscipublisher.com/index.php/tgg 254 Svačina R., Sourdille P., Kopecký D., and Bartoš J., 2020, Chromosome pairing in polyploid grasses, Frontiers in Plant Science, 11: 10. https://doi.org/10.3389/fpls.2020.01056 Tavan M., Sarikhani H., Mirjalili M., Rigano M., and Azizi A., 2021, Triterpenic and phenolic acids production changed in Salvia officinalis via in vitro and in vivo polyploidization: a consequence of altered genes expression, Phytochemistry, 189: 112803. https://doi.org/10.1016/j.phytochem.2021.112803 Tossi V., Tosar L., Laino L., Iannicelli J., Regalado J., Escandon A., Baroli I., Causin H., and Pitta-Álvarez S., 2022, Impact of polyploidy on plant tolerance to abiotic and biotic stresses, Frontiers in Plant Science, 13: 869423. https://doi.org/10.3389/fpls.2022.869423 Trojak-Goluch A., Kawka-Lipińska M., Wielgusz K., and Praczyk M., 2021, Polyploidy in industrial crops: applications and perspectives in plant breeding, Agronomy, 11(12): 2574. https://doi.org/10.3390/agronomy11122574 Udall J., and Wendel J., 2006, Polyploidy and crop improvement, Crop Science, 46: S-3-S-14. https://doi.org/10.2135/cropsci2006.07.0489tpg Wang Q., Gao A., Yang X., and Li L., 2014, Chromosome changes after polyploidization in Triticeae, Journal of Systematics and Evolution, 52(6): 790-793. https://doi.org/10.1111/jse.12125 Wang Q., Liu H., Gao A., Yang X., Liu W., Li X., and Li L., 2012, Intergenomic rearrangements after polyploidization of Kengyilia thoroldiana (Poaceae: Triticeae) affected by environmental factors, PLoS ONE, 7(2): e31033. https://doi.org/10.1371/journal.pone.0031033 Wendel J., 2004, Genome evolution in polyploids, Plant Molecular Biology, 42: 225-249. https://doi.org/10.1023/A:1006392424384 Xiang D., Quilichini T., Liu Z., Gao P., Pan Y., Li Q., Nilsen K., Venglat P., Esteban E., Pasha A., Wang Y., Wen R., Zhang Z., Hao Z., Wang E., Wei Y., Cuthbert R., Kochian L., Sharpe A., Provart N., Weijers D., Gillmor S., Pozniak C., and Datla R., 2019, The transcriptional landscape of polyploid wheats and their diploid ancestors during embryogenesis and grain development, Plant Cell, 31: 2888-2911. https://doi.org/10.1105/tpc.19.00397 Zhang K., Wang X., and Cheng F., 2019, Plant polyploidy: origin, evolution, and its influence on crop domestication, Horticultural Plant Journal, 5(6): 231-239. https://doi.org/10.1016/j.hpj.2019.11.003 Zhang R., Geng S., Qin Z., Tang Z., Liu C., Liu D., Song G., Li Y., Zhang S., Li W., Gao J., Han X., and Li G., 2019, The genome-wide transcriptional consequences of the nullisomic-tetrasomic stocks for homoeologous group 7 in bread wheat, BMC Genomics, 20: 1-17. https://doi.org/10.1186/s12864-018-5421-3 Zhu Q., Zhang X.L., Zhang H., Li J., Wang C.L., Lee D.S., and Chen L.J., 2024, Autotetraploid rice hybrids: overcoming sterility barriers for enhanced heterosis, Molecular Plant Breeding, 15(4): 167-177. https://doi.org/10.5376/mpb.2024.15.0017

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==