Triticeae Genomics and Genetics, 2024, Vol.15, No.5, 244-254 http://cropscipublisher.com/index.php/tgg 253 Iannicelli J., Guariniello J., Tossi V., Regalado J., Ciaccio L., Baren C., Álvarez S., and Escandon A., 2020, The “polyploid effect” in the breeding of aromatic and medicinal species, Scientia Horticulturae, 260: 108854. https://doi.org/10.1016/j.scienta.2019.108854 Jauhar P., 2007, Meiotic restitution in wheat polyhaploids (amphihaploids): a potent evolutionary force, The Journal of Heredity, 98(2): 188-193. https://doi.org/10.1093/jhered/esm011 Kyriakidou M., Tai H., Anglin N., Ellis D., and Strömvik M., 2018, Current strategies of polyploid plant genome sequence assembly, Frontiers in Plant Science, 9: 1660. https://doi.org/10.3389/fpls.2018.01660 Liu C., Wang J., Sun P., Yu J., Meng F., Zhang Z., Guo H., Wei C., Li X., Shen S., and Wang X., 2020, Illegitimate recombination between homeologous genes in wheat genome, Frontiers in Plant Science, 11: 1076. https://doi.org/10.3389/fpls.2020.01076 Lovell J., MacQueen A., Mamidi S., Bonnette J., Jenkins J., Napier J., Sreedasyam A., Healey A., Session A., Shu S., Barry K., Bonos S., Boston L., Daum C., Deshpande S., Ewing A., Grabowski P., Haque T., Harrison M., Jiang J., Kudrna D., Lipzen A., Pendergast T., Plott C., Qi P., Saski C., Shakirov E., Sims D., Sharma M., Sharma R., Stewart A., Singan V., Tang Y., Thibivillier S., Webber J., Weng X., Williams M., Wu G., Yoshinaga Y., Zane M., Zhang L., Zhang J., Behrman K., Boe A., Fay P., Fritschi F., Jastrow J., Lloyd-Reilley J., Martínez-Reyna J., Matamala R., Mitchell R., Rouquette F., Ronald P., Saha M., Tobias C., Udvardi M., Wing R., Wu Y., Bartley L., Casler M., Devos K., Lowry D., Rokhsar D., Grimwood J., Juenger T., and Schmutz J., 2021, Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass, Nature, 590: 438-444. https://doi.org/10.1038/s41586-020-03127-1 Luque J., Moreno E., Kovalsky I., Seijo J., and Neffa V., 2022, Polyploidy, genome size variation and diversification in an autopolyploid complex: the case of Turnera sidoides (Passifloraceae, Turneroideae), Systematics and Biodiversity, 20: 1-18. https://doi.org/10.1080/14772000.2022.2036854 Lv Z., Li Z., Wang M., Zhao F., Zhang W., Li C., Gong L., Zhang Y., Mason A., and Liu B., 2021, Conservation and trans-regulation of histone modification in the A and B subgenomes of polyploid wheat during domestication and ploidy transition, BMC Biology, 19: 1-16. https://doi.org/10.1186/s12915-021-00985-7 Madlung A., Tyagi A., Watson B., Jiang H., Kagochi T., Doerge R., Martienssen R., and Comai L., 2004, Genomic changes in synthetic Arabidopsis polyploids, The Plant Journal : for Cell and Molecular Biology, 41(2): 221-230. https://doi.org/10.1111/j.1365-313X.2004.02297.x Mason A., and Wendel J., 2020, Homoeologous exchanges, segmental allopolyploidy, and polyploid genome evolution, Frontiers in Genetics, 11: 1014. https://doi.org/10.3389/fgene.2020.01014 Middleton C., Senerchia N., Stein N., Akhunov E., Keller B., Wicker T., and Kilian B., 2014, Sequencing of chloroplast genomes from wheat, barley, rye and their relatives provides a detailed insight into the evolution of the Triticeae tribe, PLoS ONE, 9(3): e85761. https://doi.org/10.1371/journal.pone.0085761 Naranjo T., 2019, The Effect of chromosome structure upon meiotic homologous and homoeologous recombinations in Triticeae, Agronomy, 9(9): 552. https://doi.org/10.3390/agronomy9090552 Peer Y., Ashman T., Soltis P., and Soltis D., 2020, Polyploidy: an evolutionary and ecological force in stressful times, The Plant Cell, 33: 11-26. https://doi.org/10.1093/plcell/koaa015 Pourkheirandish M., Golicz A., Bhalla P., and Singh M., 2020, Global role of crop genomics in the face of climate change, Frontiers in Plant Science, 11: 922. https://doi.org/10.3389/fpls.2020.00922 Ramírez-González R., Borrill P., Lang D., Harrington S., Brinton J., Venturini L., Davey M., Jacobs J., Ex F., Pasha A., Khedikar Y., Robinson S., Cory A., Florio T., Concia L., Juery C., Schoonbeek H., Steuernagel B., Xiang D., Ridout C., Chalhoub B., Mayer K., Benhamed M., Latrasse D., Bendahmane A., Wulff B., Appels R., Tiwari V., Datla R., Choulet F., Pozniak C., Provart N., Sharpe A., Paux E., Spannagl M., Bräutigam A., and Uauy C., 2018, The transcriptional landscape of polyploid wheat, Science, 361(6403): eaar6089. https://doi.org/10.1126/science.aar6089 Renny-Byfield S., and Wendel J., 2014, Doubling down on genomes: polyploidy and crop plants, American Journal of Botany, 101(10): 1711-1725. https://doi.org/10.3732/ajb.1400119 Ruiz M., Oustric J., Santini J., and Morillon R., 2020, Synthetic polyploidy in grafted crops, Frontiers in Plant Science, 11: 540894. https://doi.org/10.3389/fpls.2020.540894 Scarlett V., Lovell J., Shao M., Phillips J., Shu S., Lusinska J., Goodstein D., Jenkins J., Grimwood J., Barry K., Chalhoub B., Schmutz J., Hasterok R., Catalán P., and Vogel J., 2022, Multiple origins, one evolutionary trajectory: gradual evolution characterizes distinct lineages of allotetraploid Brachypodium, Genetics, 223(2): iyac146. https://doi.org/10.1093/genetics/iyac146 Schiessl S., Katche E., Ihien E., Chawla H., and Mason A., 2019, The role of genomic structural variation in the genetic improvement of polyploid crops, The Crop Journal, 7(2): 127-140. https://doi.org/10.1016/j.cj.2018.07.006 Suissa J., Kinosian S., Schafran P., Bolin J., Taylor W., and Zimmer E., 2021, Homoploid hybrids, allopolyploids, and high ploidy levels characterize the evolutionary history of a western North American quillwort complex (Isoëtes), Molecular Phylogenetics and Evolution, 166: 107332. https://doi.org/10.1016/j.ympev.2021.107332
RkJQdWJsaXNoZXIy MjQ4ODYzNQ==