TGG_2024v15n5

Triticeae Genomics and Genetics, 2024, Vol.15, No.5, 234-243 http://cropscipublisher.com/index.php/tgg 243 Pronin D., Börner A., Weber H., and Scherf K., 2020, Wheat (Triticum aestivumL.) breeding from 1891 to 2010 contributed to increasing yield and glutenin contents but decreasing protein and gliadin contents, Journal of Agricultural and Food Chemistry, 68(46): 13247-13256. https://doi.org/10.1021/acs.jafc.0c02815 Raju S., Rej A., and Sanders D., 2023, The truth about gluten!, British Journal of Nutrition, 129: 255-261. https://doi.org/10.1017/S0007114522001933 Renzo T., Cascone G., Crescente G., Reale A., Menga V., D’Apolito M., Nazzaro S., Volpe M., and Moccia S., 2023, Ancient grain flours with different degrees of sifting: advances in knowledge of nutritional, Technological, and Microbiological Aspects, Foods, 12(22): 4096. https://doi.org/10.3390/foods12224096 Sabença C., Ribeiro M., Sousa T., Poeta P., Bagulho A., and Igrejas G., 2021, Wheat/gluten-related disorders and gluten-free diet misconceptions: a review, Foods, 10(8): 1765. https://doi.org/10.3390/foods10081765 Scherf K., 2019, Immunoreactive cereal proteins in wheat allergy, non-celiac gluten/wheat sensitivity (NCGS) and celiac disease, Current Opinion in Food Science, 25: 35-41. https://doi.org/10.1016/j.cofs.2019.02.003 Scott M., Botigué L., Brace S., Stevens C., Mullin V., Stevenson A., Thomas M., Fuller D., and Mott R., 2019, A 3,000-year-old Egyptian emmer wheat genome reveals dispersal and domestication history, Nature Plants, 5: 1120-1128. https://doi.org/10.1038/s41477-019-0534-5 Sharma N., Bhatia S., Chunduri V., Kaur S., Sharma S., Kapoor P., Kumari A., and Garg M., 2020, Pathogenesis of celiac disease and other gluten related disorders in wheat and strategies for mitigating them, Frontiers in Nutrition, 7: 6. https://doi.org/10.3389/fnut.2020.00006 Sousa T., Ribeiro M., Sabença C., and Igrejas G., 2021, The 10 000-year success story of wheat!, Foods, 10(9): 2124. https://doi.org/10.3390/foods10092124 Spisni E., Imbesi V., Giovanardi E., Petrocelli G., Alvisi P., and Valerii M., 2019, Differential physiological responses elicited by ancient and heritage wheat cultivars compared to modern ones, Nutrients, 11(12): 2879. https://doi.org/10.3390/nu11122879 Toulemonde F., Daoulas G., Bonnaire E., Riquier V., Wiethold J., and Zech-Matterne V., 2020, A brief history of plants in north-eastern France: 6,000 years of crop introduction in the Plain of Troyes, Champagne, Vegetation History and Archaeobotany, 30: 5-19. https://doi.org/10.1007/s00334-020-00800-3 Ulaş B., 2020, Traditional wheat cultivation in South-Eastern Anatolia and its comparison to the archaeological context, Genetic Resources and Crop Evolution, 68: 151-184. https://doi.org/10.1007/s10722-020-00977-6 Ulaş B., and Fiorentino G., 2020, Recent attestations of “new” glume wheat in Turkey: a reassessment of its role in the reconstruction of Neolithic agriculture, Vegetation History and Archaeobotany, 30: 685-701. https://doi.org/10.1007/s00334-020-00807-w Velimirović A., Jovović Z., and Pržulj N., 2021, From neolithic to late modern period: brief history of wheat, Genetika, 53(1): 407-417. https://doi.org/10.2298/GENSR2101407V Webber H., Heyd V., Horton M., Bell M., Matthews W., and Chadburn A., 2019, Precision farming and archaeology, Archaeological and Anthropological Sciences, 11: 727-734. https://doi.org/10.1007/s12520-017-0564-8 Zhang J.Y., 2024, Legume evolution: from wild ancestors to modern crops, Legume Genomics and Genetics, 15(3): 93-104. https://doi.org/10.5376/lgg.2024.15.0011 Zhang S., Zhang R., Gao J., Song G., Li J., Li W., Qi Y.P., Li Y.L., and Li G., 2021, CRISPR/Cas9‐mediated genome editing for wheat grain quality improvement, Plant Biotechnology Journal, 19(9): 1684. https://doi.org/10.1111/pbi.13647 Zhao X.Y., 2024, Precision editing: revolutionary applications of genome editing technology in tree breeding, Molecular Plant Breeding, 15(2): 70-80. https://doi.org/10.5376/mpb.2024.15.0009

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==