TGG_2024v15n4

Triticeae Genomics and Genetics, 2024, Vol.15, No.4, 221-233 http://cropscipublisher.com/index.php/tgg 233 Rabanus-Wallace M., Hackauf B., Mascher M., Lux T., Wicker T., Gundlach H., Báez M., Houben A., Mayer K., Guo L., Poland J., Pozniak C., Walkowiak S., Melonek J., Praz C., Schreiber M., Budak H., Heuberger M., Steuernagel B., Wulff B., Börner A., Byrns B., Čížková J., Fowler D., Fritz A., Himmelbach A., Kaithakottil G., Keilwagen J., Keller B., Konkin D., Larsen J., Li Q., Myśków B., Padmarasu S., Rawat N., Sesiz U., Biyiklioglu-Kaya S., Sharpe A., Šimková H., Small I., Swarbreck D., Toegelová H., Tsvetkova N., Voylokov A., Vrána J., Bauer E., Bolibok-Brągoszewska H., Doležel J., Hall A., Jia J., Korzun V., Laroche A., Ma X., Ordon F., Özkan H., Rakoczy-Trojanowska M., Scholz U., Schulman A., Siekmann D., Stojałowski S., Tiwari V., Spannagl M., and Stein N., 2021, Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential, Nature Genetics, 53: 564-573. https://doi.org/10.1038/s41588-021-00807-0 PMid:33737754 PMCid:PMC8035072 Schlegel R., 2022, 100 years of chromosome research in rye, Secale L., Plants, 11(13): 1753. https://doi.org/10.3390/plants11131753 PMid:35807704 PMCid:PMC9268793 Schreiber M., Gao Y., Koch N., Fuchs J., Heckmann S., Himmelbach A., Börner A., Özkan H., Maurer A., Stein N., Mascher M., and Dreissig S., 2022, Recombination landscape divergence between populations is marked by larger low-recombining regions in domesticated rye, Molecular Biology and Evolution, 39(6): 131. https://doi.org/10.1093/molbev/msac131 PMid:35687854 PMCid:PMC9218680 Schreiber M., Himmelbach A., Börner A., and Mascher M., 2018, Genetic diversity and relationship between domesticated rye and its wild relatives as revealed through genotyping‐by‐sequencing, Evolutionary Applications, 12: 66-77. https://doi.org/10.1111/eva.12624 PMid:30622636 PMCid:PMC6304746 Seabra L., Teira-Brión A., López-Dóriga I., Martín-Seijo M., Almeida R., and Tereso J.P., 2023, The introduction and spread of rye (Secale cereale) in the Iberian Peninsula, PLoS One, 18(5): e0284222. https://doi.org/10.1371/journal.pone.0284222 PMid:37163473 PMCid:PMC10171662 Sidhu J., Ramakrishnan S., Ali S., Bernardo A., Bai G., Abdullah S., Ayana G., and Sehgal S., 2019, Assessing the genetic diversity and characterizing genomic regions conferring tan spot resistance in cultivated rye, PLoS ONE, 14(3): e0214519. https://doi.org/10.1371/journal.pone.0214519 PMid:30921415 PMCid:PMC6438500 Sun Y., Shen E., Hu Y., Wu D., Feng Y., Lao S., and Fan L., 2022, Population genomic analysis reveals domestication of cultivated rye from weedy rye, Molecular Plant, 15(3): 552-561. https://doi.org/10.1016/j.molp.2021.12.015 PMid:34971791 Targonska-Karasek M., Boczkowska M., Podyma W., Pasnik M., Niedzielski M., Rucinska A., and Rakoczy-Trojanowska M., 2020, Investigation of obsolete diversity of rye (Secale cereale L.) using multiplexed SSR fingerprinting and evaluation of agronomic traits, Journal of Applied Genetics, 61: 513-529. https://doi.org/10.1007/s13353-020-00579-z PMid:32895738 PMCid:PMC7652744

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==