TGG_2024v15n4

Triticeae Genomics and Genetics, 2024, Vol.15, No.4, 206-220 http://cropscipublisher.com/index.php/tgg 219 He J., Zhao X., Laroche A., Lu Z., Liu H., and Li Z., 2014, Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding, Frontiers in Plant Science, 5: 484. https://doi.org/10.3389/fpls.2014.00484 PMid:25324846 PMCid:PMC4179701 Heffner E., Jannink J., Iwata H., Souza E., and Sorrells M., 2011, Genomic selection accuracy for grain quality traits in biparental wheat populations, Crop Science, 51: 2597-2606. https://doi.org/10.2135/cropsci2011.05.0253 Huang X., Cöster H., Ganal M., and Röder M., 2003, Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives ofwheat (Triticum aestivumL.), Theoretical and Applied Genetics, 106: 1379-1389. https://doi.org/10.1007/s00122-002-1179-7 PMid:12750781 Jafarzadeh J., Bonnett D., Jannink J., Akdemir D., Dreisigacker S., and Sorrells M., 2016, Breeding value of primary synthetic wheat genotypes for grain yield, PLoS ONE, 11(9): e0162860. https://doi.org/10.1371/journal.pone.0162860 PMid:27656893 PMCid:PMC5033409 Li J., Wan H., and Yang W., 2014, Synthetic hexaploid wheat enhances variation and adaptive evolution of bread wheat in breeding processes, Journal of Systematics and Evolution, 52(6): 735-742. https://doi.org/10.1111/jse.12110 Merchuk-Ovnat L., Fahima T., Krugman T., and Saranga Y., 2016, Ancestral QTL alleles from wild emmer wheat improve grain yield, biomass and photosynthesis across enviroinments in modern wheat, Plant Science : an International Journal of Experimental Plant Biology, 251: 23-34. https://doi.org/10.1016/j.plantsci.2016.05.003 PMid:27593460 Miedaner T., and Korzun V., 2012, Marker-assisted selection for disease resistance in wheat and barley breeding, Phytopathology, 102(6): 560-566. https://doi.org/10.1094/PHYTO-05-11-0157 PMid:22568813 Mirzaghaderi G., Abdolmalaki Z., Ebrahimzadegan R., Bahmani F., Orooji F., Majdi M., and Mozafari A., 2020, Production of synthetic wheat lines to exploit the genetic diversity of emmer wheat and D genome containing Aegilops species in wheat breeding, Scientific Reports, 10: 19698. https://doi.org/10.1038/s41598-020-76475-7 PMid:33184344 PMCid:PMC7661528 Mujeeb-Kazi A., Kazi A., Dundas I., Rasheed A., Ogbonnaya F., Kishii M., Bonnett D., Wang R., Xu S., Chen P., Mahmood T., Bux H., and Farrakh S., 2013, Genetic diversity for wheat improvement as a conduit to food security, Advances in Agronomy, 122: 179-257. https://doi.org/10.1016/B978-0-12-417187-9.00004-8 Ogbonnaya F., Abdalla O., Mujeeb-Kazi A., Kazi A., Xu S., Gosman N., Lagudah E., Bonnett D., Sorrells M., and Tsujimoto H., 2013, Synthetic hexaploids: harnessing species of the primary gene pool for wheat improvement, Plant Breeding Reviews, 37: 35-122. https://doi.org/10.1002/9781118497869.ch2 Okada M., Michikawa A., Yoshida K., Nagaki K., Ikeda T., and Takumi S., 2020, Phenotypic effects of the U-genome variation in nascent synthetic hexaploids derived from interspecific crosses between durum wheat and its diploid relative Aegilops umbellulata, PLoS ONE, 15(4): e0231129. https://doi.org/10.1371/journal.pone.0231129 PMid:32240263 PMCid:PMC7117738 Paux E., Lafarge S., Balfourier F., Derory J., Charmet G., Alaux M., Perchet G., Bondoux M., Baret F., Barillot R., Ravel C., Sourdille P., Gouis J., and Consortium O., 2022, Breeding for economically and environmentally sustainable wheat varieties: an integrated approach from genomics to selection, Biology, 11(1): 149. https://doi.org/10.3390/biology11010149 PMid:35053148 PMCid:PMC8773325 Sehgal D., Vikram P., Sansaloni C., Ortiz C., Pierre C., Payne T., Ellis M., Amri A., Petroli C., Wenzl P., and Singh S., 2015, Exploring and mobilizing the gene bank biodiversity for wheat improvement, PLoS ONE, 10(7): e0132112. https://doi.org/10.1371/journal.pone.0132112 PMid:26176697 PMCid:PMC4503568 Trethowan R., and Mujeeb-Kazi A., 2008, Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat, Crop Science, 48: 1255-1265. https://doi.org/10.2135/cropsci2007.08.0477 Trono D., and Pecchioni N., 2022, Candidate genes associated with abiotic stress response in plants as tools to engineer tolerance to drought, Salinity and extreme temperatures in wheat: an overview, Plants, 11(23): 3358. https://doi.org/10.3390/plants11233358 PMid:36501397 PMCid:PMC9737347 Vindras-Fouillet C., Goldringer I., Frank G., Dewalque M., Colin A., Montaz H., Berthellot J., Baltassat R., and Dalmasso C., 2021, Sensory analyses and nutritional qualities of wheat population varieties developed by participatory breeding, Agronomy, 11(11): 2117. https://doi.org/10.3390/agronomy11112117

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==