TGG_2024v15n4

Triticeae Genomics and Genetics, 2024, Vol.15, No.4, 206-220 http://cropscipublisher.com/index.php/tgg 218 is imperative to continue exploring and utilizing the genetic diversity present in SHW and other wild relatives to create a more robust and sustainable agricultural landscape. The ongoing efforts to map and understand the genetic basis of key traits in SHW will further enable the targeted breeding of wheat varieties that meet the demands of a changing world. Acknowledgments The author extends sincere thanks to two anonymous peer reviewers for their feedback on the manuscript. Conflict of Interest Disclosure The author affirms that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Aberkane H., Payne T., Kishi M., Smale M., Amri A., and Jamora N., 2020, Transferring diversity of goat grass to farmers’ fields through the development of synthetic hexaploid wheat, Food Security, 12: 1017-1033. https://doi.org/10.1007/s12571-020-01051-w Afzal F., Li H., Gul A., Subhani A., Ali A., Mujeeb-Kazi A., Ogbonnaya F., Trethowan R., Xia X., He Z., and Rasheed A., 2019, Genome-wide analyses reveal footprints of divergent selection and drought adaptive traits in synthetic-derived wheats, G3: Genes Genomes Genetics, 9: 1957-1973. https://doi.org/10.1534/g3.119.400010 PMid:31018942 PMCid:PMC6553533 Ali M., Danting S., Wang J., Sadiq H., Rasheed A., He Z., and Li H., 2022, Genetic diversity and selection signatures in synthetic-derived wheats and modern spring wheat, Frontiers in Plant Science, 13: 877496. https://doi.org/10.3389/fpls.2022.877496 PMid:35903232 PMCid:PMC9315363 Arruda M., Lipka A., Brown P., Krill A., Thurber C., Brown-Guedira G., Dong Y., Foresman B., and Kolb F., 2016, Comparing genomic selection and marker-assisted selection for Fusarium head blight resistance in wheat (Triticum aestivumL.), Molecular Breeding, 36: 1-11. https://doi.org/10.1007/s11032-016-0508-5 Bhatta M., Shamanin V., Shepelev S., Baenziger P., Pozherukova V., Pototskaya I., Morgounov A., and Morgounov A., 2019, Marker-trait associations for enhancing agronomic performance, disease resistance, and grain quality in synthetic and bread wheat accessions in western siberia, G3: Genes Genomes Genetics, 9: 4209-4222. https://doi.org/10.1534/g3.119.400811 PMid:31645419 PMCid:PMC6893185 Blanco I., Rajaram S., and Kronstad W., 2001, Agronomic potential of synthetic hexaploid wheat-derived populations, Crop Science, 41: 670-676. https://doi.org/10.2135/cropsci2001.413670x Brenchley R., Spannagl M., Pfeifer M., Barker G., D'Amore R., Allen A., McKenzie N., Kramer M., Kerhornou A., Bolser D., Kay S., Waite D., Trick M., Bancroft I., Gu Y., Huo N., Luo M., Sehgal S., Kianian S., Gill B., Anderson O., Kersey P., Dvorak J., Mccombie R., Hall A., Mayer K., Edwards K., Bevan M., and Hall N., 2012, Analysis of the bread wheat genome using whole genome shotgun sequencing, Nature, 491: 705-710. https://doi.org/10.1038/nature11650 PMid:23192148 PMCid:PMC3510651 Crespo-Herrera L., Crossa J., Huerta-Espino J., Vargas M., Mondal S., Velu G., Payne T., Braun H., and Singh R., 2018, Genetic gains for grain yield in CIMMYT’s semi-arid wheat yield trials grown in suboptimal environments, Crop Science, 58: 1890-1898. https://doi.org/10.2135/cropsci2018.01.0017 PMid:33343013 PMCid:PMC7691759 Dreisigacker S., Kishii M., Lage J., and Warburton M., 2008, Use of synthetic hexaploid wheat to increase diversity for CIMMYT bread wheat improvement, Crop & Pasture Science, 59: 413-420. https://doi.org/10.1071/AR07225 Dunckel S., Crossa J., Wu S., Bonnett D., and Poland J., 2017, Genomic selection for increased yield in synthetic-derived wheat, Crop Science, 57: 713-725. https://doi.org/10.2135/cropsci2016.04.0209 Ginkel M., and Ogbonnaya F., 2007, Novel genetic diversity from synthetic wheats in breeding cultivars for changing production conditions, Field Crops Research, 104: 86-94. https://doi.org/10.1016/j.fcr.2007.02.005 Gupta P., Langridge P., and Mir R., 2010, Marker-assisted wheat breeding: present status and future possibilities, Molecular Breeding, 26: 145-161. https://doi.org/10.1007/s11032-009-9359-7 Hao M., Zhang L., Zhao L., Dai S., Li A., Yang W., Xie D., Li Q., Ning S., Yan Z., Wu B., Lan X., Yuan Z., Huang L., Wang J., Zheng K., Chen W., Yu M., Chen X., Chen M., Wei Y., Zhang H., Kishii M., Hawkesford M., Mao L., Zheng Y., and Liu D., 2019, A breeding strategy targeting the secondary gene pool of bread wheat: introgression from a synthetic hexaploid wheat, Theoretical and Applied Genetics, 132: 2285-2294. https://doi.org/10.1007/s00122-019-03354-9 PMid:31049633

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==