TGG_2024v15n4

Triticeae Genomics and Genetics, 2024, Vol.15, No.4, 173-184 http://cropscipublisher.com/index.php/tgg 183 Kumlehn J., and Hensel G., 2009, Genetic transformation technology in the Triticeae, Breeding Science, 59: 553-560. https://doi.org/10.1270/jsbbs.59.553 Xiong J., Ding J., and Li Y., 2015, Genome-editing technologies and their potential application in horticultural crop breeding, Horticulture Research, 2: 15019. https://doi.org/10.1038/hortres.2015.19 PMid:26504570 PMCid:PMC4595993 Jia J., Zhao S., Kong X., Li Y., Zhao G., He W., Appels R., Pfeifer M., Tao Y., Zhang X., Jing R., Zhang C., Ma Y., Gao L., Gao C., Spannagl M., Mayer K., Li D., Pan S., Zheng F., Hu Q., Xia X., Li J., Liang Q., Chen J., Wicker T., Gou C., Kuang H., He G., Luo Y., Keller B., Xia Q., Lu P., Wang J., Zou H., Zhang R., Xu J., Gao J., Middleton C., Quan Z., Liu G., Wang J., Yang H., Liu X., He Z., Mao L., and Wang J., 2013, Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation, Nature, 496: 91-95. https://doi.org/10.1038/nature12028 PMid:23535592 Jones H., Lister D., Cai D., Kneale C., Cockram J., Peña-Chocarro L., and Jones M., 2016, The trans-Eurasian crop exchange in prehistory: discerning pathways from barley phylogeography, Quaternary International, 426: 26-32. https://doi.org/10.1016/j.quaint.2016.02.029 Levy A., and Feldman M., 2022, Evolution and origin of bread wheat, The Plant Cell, 34: 2549-2567. https://doi.org/10.1093/plcell/koac130 PMid:35512194 PMCid:PMC9252504 Li S., Zhang C., Li J., Yan L., Wang N., and Xia L., 2021, Present and future prospects for wheat improvement through genome editing and advanced technologies, Plant Communications, 2(4): 100211. https://doi.org/10.1016/j.xplc.2021.100211 PMid:34327324 PMCid:PMC8299080 Lopes T., Hatt S., Xu Q., Chen J., Liu Y., and Francis F., 2016, Wheat (Triticum aestivum L.)-based intercropping systems for biological pest control, Pest Management Science, 72(12): 2193-2202. https://doi.org/10.1002/ps.4332 PMid:27271821 Maeda A., and Nakamichi N., 2022, Plant clock modifications for adapting flowering time to local environments, Plant Physiology, 190: 952-967. https://doi.org/10.1093/plphys/kiac107 PMid:35266545 PMCid:PMC9516756 Mahpara S., Bashir M., Ullah R., Bilal M., Kausar S., Latif M., Arif M., Akhtar I., Brestič M., Zuan A., Salama E., Al-hashimi A., and Alfagham A., 2022, Field screening of diverse wheat germplasm for determining their adaptability to semi-arid climatic conditions, PLoS ONE, 17(3): e0265344. https://doi.org/10.1371/journal.pone.0265344 PMid:35303032 PMCid:PMC8932620 Ma Z., Song J., Wu X., Hou G., and Huan X., 2022, Spatiotemporal distribution and geographical impact factors of barley and wheat during the late neolithic and bronze age (4000-2300 cal. a BP) in the Gansu-Qinghai region, Northwest China, Sustainability, 14(9): 5417. https://doi.org/10.3390/su14095417 Mochida K., and Shinozaki K., 2013, Unlocking Triticeae genomics to sustainably feed the future, Plant and Cell Physiology, 54: 1931-1950. https://doi.org/10.1093/pcp/pct163 Oliveira H., Jacocks L., Czajkowska B., Kennedy S., and Brown T., 2020, Multiregional origins of the domesticated tetraploid wheats, PLoS ONE, 15(1): e0227148. https://doi.org/10.1371/journal.pone.0227148 PMid:31968001 PMCid:PMC6975532 Ozkan H., Brandolini A., Schäfer-Pregl R., and Salamini F., 2002, AFLP analysis of a collection of tetraploid wheats indicates the origin of emmer and hard wheat domestication in southeast Turkey, Molecular Biology and Evolution, 19(10): 1797-1801. https://doi.org/10.1093/oxfordjournals.molbev.a004002 PMid:12270906 Özkan H., Willcox G., Graner A., Salamini F., and Kilian B., 2010, Geographic distribution and domestication of wild emmer wheat (Triticum dicoccoides), Genetic Resources and Crop Evolution, 58: 11-53. https://doi.org/10.1007/s10722-010-9581-5 Pequeno D., Hernández-Ochoa I., Reynolds M., Sonder K., Molero-Milan A., Robertson R., Lopes M., Xiong W., Kropff M., and Asseng S., 2021, Climate impact and adaptation to heat and drought stress of regional and global wheat production, Environmental Research Letters, 16: 5. https://doi.org/10.1088/1748-9326/abd970 Piperno D., Weiss E., Holst I., and Nadel D., 2004, Processing of wild cereal grains in the upper palaeolithic revealed by starch grain analysis, Nature, 430: 670-673. https://doi.org/10.1038/nature02734 PMid:15295598 Preece C., Livarda A., Christin P., Wallace M., Martin G., Charles M., Jones G., Rees M., and Osborne C., 2016, How did the domestication of fertile crescent grain crops increase their yields?, Functional Ecology, 31: 387-397. https://doi.org/10.1111/1365-2435.12760

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==