TGG_2024v15n3

Triticeae Genomics and Genetics, 2024, Vol.15, No.3, 162-171 http://cropscipublisher.com/index.php/tgg 170 Michikawa A., Okada M., Ikeda T., Nagaki K., Yoshida K., and Takumi S., 2020, Phenotypic effects of Am genomes in nascent synthetic hexaploids derived from interspecific crosses between durum and wild einkorn wheat, PLOS ONE, 18(4): e0284408. https://doi.org/10.1371/journal.pone.0284408 PMid:37104480 PMCid:PMC10138484 Okada M., Michikawa A., Yoshida K., Nagaki K., Ikeda T., and Takumi S., 2020, Phenotypic effects of the U-genome variation in nascent synthetic hexaploids derived from interspecific crosses between durum wheat and its diploid relative Aegilops umbellulata, PLoS ONE, 15(4): e0231129. https://doi.org/10.1371/journal.pone.0231129 PMid:32240263 PMCid:PMC7117738 Rosyara U., Kishii M., Payne T., Sansaloni C., Singh R., Braun H., and Dreisigacker S., 2019, Genetic contribution of synthetic hexaploid wheat to CIMMYT’s spring bread wheat breeding germplasm, Scientific Reports, 9: 12355. https://doi.org/10.1038/s41598-019-47936-5 PMid:31451719 PMCid:PMC6710277 Sansaloni C., Franco J., Santos B., Percival‐Alwyn L., Singh S., Petroli C., Campos J., Dreher K., Payne T., Marshall D., Kilian B., Milne I., Raubach S., Shaw P., Stephen G., Carling J., Pierre C., Burgueño J., Crosa J., Li H., Guzmán C., Kehel Z., Amri A., Kilian A., Wenzl P., Uauy C., Banziger M., Cáccamo M., and Pixley K., 2020, Diversity analysis of 80 000 wheat accessions reveals consequences and opportunities of selection footprints, Nature Communications, 11: 4572. https://doi.org/10.1038/s41467-020-18404-w PMid:32917907 PMCid:PMC7486412 Szabo-Hever A., Zhang Q., Friesen T., Zhong S., Elias E., Cai X., Jin Y., Faris J., Chao S., and Xu S., 2018, Genetic diversity and resistance to fusarium head blight in synthetic hexaploid wheat derived fromAegilops tauschii and diverse Triticum turgidumsubspecies, Frontiers in Plant Science, 9: 1829. https://doi.org/10.3389/fpls.2018.01829 PMid:30619402 PMCid:PMC6298526 Tillett B., Hale C., Martin J., and Giroux M., 2022, Genes impacting grain weight and number in wheat (Triticum aestivumL. ssp. aestivum), Plants, 11(13): 1772. https://doi.org/10.3390/plants11131772 PMid:35807724 PMCid:PMC9269389 Truong H., Lee H., Kishii M., Hong S., and Lee H., 2020, Development and characterization of synthetic hexaploid wheat for improving the resistance of common wheat to leaf rust and heat stress, Agronomy, 11: 18. https://doi.org/10.3390/agronomy11010018 Ullah S., Bramley H., Mahmood T., and Trethowan R., 2020, The impact of emmer genetic diversity on grain protein content and test weight of hexaploid wheat under high temperature stress, Journal of Cereal Science, 95: 103052. https://doi.org/10.1016/j.jcs.2020.103052 Walkowiak S., Gao L., Monat C., Haberer G., Kassa M., Brinton J., Ramírez-González R., Kolodziej M., Delorean E., Thambugala D., Klymiuk V., Byrns B., Gundlach H., Bandi V., Siri J., Nilsen K., Aquino C., Himmelbach A., Copetti D., Ban T., Venturini L., Bevan M., Clavijo B., Koo D., Ens J., Wiebe K., N’Diaye A., Fritz A., Gutwin C., Fiebig A., Fosker C., Fu B., Accinelli G., Gardner K., Fradgley N., Gutierrez-Gonzalez J., Halstead-Nussloch G., Hatakeyama M., Koh C., Deek J., Costamagna A., Fobert P., Heavens D., Kanamori H., Kawaura K., Kobayashi F., Krasileva K., Kuo T., McKenzie N., Murata K., Nabeka Y., Paape T., Padmarasu S., Percival‐Alwyn L., Kagale S., Scholz U., Sese J., Juliana P., Singh R., Shimizu‐Inatsugi R., Swarbreck D., Cockram J., Budak H., Tameshige T., Tanaka T., Tsuji H., Wright J., Wu J., Steuernagel B., Small I., Cloutier S., Keeble-Gagnère G., Muehlbauer G., Tibbets J., Nasuda S., Melonek J., Hucl P., Sharpe A., Clark M., Legg E., Bharti A., Langridge P., Hall A., Uauy C., Mascher M., Krattinger S., Handa H., Shimizu K., Distelfeld A., Chalmers K., Keller B., Mayer K., Poland J., Stein N., McCartney C., Spannagl M., Wicker T., and Pozniak C., 2020, Multiple wheat genomes reveal global variation in modern breeding, Nature, 588: 277-283. https://doi.org/10.1038/s41586-020-2961-x PMid:33239791 PMCid:PMC7759465 Wan H., Li J., Ma S., Wang Q., Zhu X., Liu Z., Yang F., Yang M., Zheng J., Li S., Luo J., and Yang W., 2020, Polyploidization enhancing genetic recombination of the ancestral diploid genome in the evolution of hexaploid wheat, bioRxiv, 2020-02. https://doi.org/10.1101/2020.02.21.958991 Wan H., Yang F., Li J., Wang Q., Liu Z., Tang Y., and Yang W., 2023, Genetic improvement and application practices of synthetic hexaploid wheat, Genes, 14(2): 283. https://doi.org/10.3390/genes14020283 PMid:36833210 PMCid:PMC9956247 Yang F., Wan H., Li J., Wang Q., Yang N., Zhu X., Liu Z., Yang Y., Ma W., Fan X., Yang W., and Zhou Y., 2022, Pentaploidization enriches the genetic diversity of wheat by enhancing the recombination of AB genomes, Frontiers in Plant Science, 13: 883868. https://doi.org/10.3389/fpls.2022.883868 PMid:35845672 PMCid:PMC9281561 Yang F., Zhang J., Liu Q., Liu H., Zhou Y., Yang W., and Ma W., 2022, Improvement and re-evolution of tetraploid wheat for global environmental challenge and diversity consumption demand, International Journal of Molecular Sciences, 23(4): 2206. https://doi.org/10.3390/ijms23042206 PMid:35216323 PMCid:PMC8878472

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==