TGG_2024v15n3

Triticeae Genomics and Genetics, 2024, Vol.15, No.3, 152-161 http://cropscipublisher.com/index.php/tgg 160 Chidzanga C., Fleury D., Baumann U., Mullan D., Watanabe S., Kalambettu P., Pontre R., Edwards J., Forrest K., Wong D., Langridge P., Chalmers K., and Garcia M., 2021, Development of an australian bread wheat nested association mapping population, a new genetic diversity resource for breeding under dry and hot climates, International Journal of Molecular Sciences, 22(9): 4348. https://doi.org/10.3390/ijms22094348 PMid:33919411 PMCid:PMC8122485 El-rawy M., 2020, Assessment of Genetic Diversity for Some Egyptian Wheat Varieties based on Morphological Characters and SSR Markers, Agricultural and Food Sciences, 2(2): 144-160. Feuillet C., Langridge P., and Waugh R., 2008, Cereal breeding takes a walk on the wild side, Trends in genetics: TIG, 24(1): 24-32. https://doi.org/10.1016/j.tig.2007.11.001 PMid:18054117 Giovenali G., Kuzmanović L., Capoccioni A., and Ceoloni C., 2023, The Response of Chromosomally Engineered Durum Wheat-Thinopyrum ponticum Recombinant Lines to the Application of Heat and Water-Deficit Stresses: Effects on Physiological, Biochemical and Yield-Related Traits, Plants, 12(4): 704. https://doi.org/10.3390/plants12040704 PMid:36840052 PMCid:PMC9965029 Gorafi Y., Kim J., Elbashir A., and Tsujimoto H., 2018, A population of wheat multiple synthetic derivatives: an effective platform to explore, harness and utilize genetic diversity of Aegilops tauschii for wheat improvement, Theoretical and Applied Genetics, 131: 1615-1626. https://doi.org/10.1007/s00122-018-3102-x PMid:29705916 PMCid:PMC6061144 Govindaraj M., Rai K., Kanatti A., Upadhyaya H., Shivade H., and Rao A., 2020, Exploring the genetic variability and diversity of pearl millet core collection germplasm for grain nutritional traits improvement, Scientific Reports, 10: 21177. https://doi.org/10.1038/s41598-020-77818-0 PMid:33273504 PMCid:PMC7713302 Hao M., Zhang L., Zhao L., Dai S., Li A., Yang W., Xie D., Li Q., Ning S., Yan Z., Wu B., Lan X., Yuan Z., Huang L., Wang J., Zheng K., Chen W., Yu M., Chen X., Chen M., Wei Y., Zhang H., Kishii M., Hawkesford M., Mao L., Zheng Y., and Liu D., 2019, A breeding strategy targeting the secondary gene pool of bread wheat: introgression from a synthetic hexaploid wheat, Theoretical and Applied Genetics, 132: 2285-2294. https://doi.org/10.1007/s00122-019-03354-9 PMid:31049633 Hao M., Zhang L., Ning S., Huang L., Yuan Z., Wu B., Yan Z., Dai S., Jiang B., Zheng Y., and Liu D., 2020, The Resurgence of introgression breeding, as exemplified in wheat improvement, Frontiers in Plant Science, 11: 252. https://doi.org/10.3389/fpls.2020.00252 PMid:32211007 PMCid:PMC7067975 He F., Pasam R., Shi F., Kant S., Keeble-Gagnère G., Kay P., Forrest K., Fritz A., Hucl P., Wiebe K., Knox R., Cuthbert R., Pozniak C., Akhunova A., Morrell P., Davies J., Webb S., Spangenberg G., Hayes B., Daetwyler H., Tibbits J., Hayden M., and Akhunov E., 2019. Exome sequencing highlights the role of wild-relative introgression in shaping the adaptive landscape of the wheat genome, Nature Genetics, 51: 896-904. https://doi.org/10.1038/s41588-019-0382-2 PMid:31043759 Joynson R., Molero G., Coombes B., Gardiner L., Rivera-Amado C., Piñera-Chávez F., Evans J., Furbank R., Reynolds M., and Hall A., 2020, Uncovering candidate genes involved in photosynthetic capacity using unexplored genetic variation in spring wheat, Plant Biotechnology Journal, 19: 1537-1552. https://doi.org/10.1111/pbi.13568 PMid:33638599 PMCid:PMC8384606 Kumar S., Jacob S., Mir R., Vikas V., Kulwal P., Chandra T., Kaur S., Kumar U., Kumar S., Sharma S., Singh R., Prasad S., Singh A., Singh A., Kumari J., Saharan M., Bhardwaj S., Prasad M., Kalia S., and Singh K., 2022, Indian wheat genomics initiative for harnessing the potential of wheat germplasm resources for breeding disease-resistant, nutrient-dense, and climate-resilient cultivars, Frontiers in Genetics, 13: 834366. https://doi.org/10.3389/fgene.2022.834366 PMid:35846116 PMCid:PMC9277310 Molero G., Joynson R., Piñera-Chávez F., Gardiner L., Rivera-Amado C., Hall A., and Reynolds M., 2018, Elucidating the genetic basis of biomass accumulation and radiation use efficiency in spring wheat and its role in yield potential, Plant Biotechnology Journal, 17: 1276 - 1288. https://doi.org/10.1111/pbi.13052 PMid:30549213 PMCid:PMC6576103 Negisho K., Shibru S., Pillen K., Ordon F., and Wehner G., 2021, Genetic diversity of Ethiopian durum wheat landraces, PLoS ONE, 16(2): e0247016. https://doi.org/10.1371/journal.pone.0247016 PMid:33596260 PMCid:PMC7888639 Raj S., and Nadarajah K., 2022, QTL and candidate genes: techniques and advancement in abiotic stress resistance breeding of major cereals, International Journal of Molecular Sciences, 24(1): 6. https://doi.org/10.3390/ijms24010006 PMid:36613450 PMCid:PMC9820233

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==