Triticeae Genomics and Genetics, 2024, Vol.15, No.3, 137-151 http://cropscipublisher.com/index.php/tgg 149 Jadon V., Sharma S., Krishna H., Krishnappa G., Gajghate R., Devate N., Panda K., Jain N., Singh P., and Singh G., 2023, Molecular mapping of biofortification traits in bread wheat (Triticum aestivumL.) using a high-density SNP based linkage map, Genes, 14(1): 221. https://doi.org/10.3390/genes14010221 PMid:36672962 PMCid:PMC9859277 Jaganathan D., Bohra A., Thudi M., and Varshney R., 2020, Fine mapping and gene cloning in the post-NGS era: advances and prospects. TAG. theoretical and applied genetics, Theoretische Und Angewandte Genetik, 133: 1791-1810. https://doi.org/10.1007/s00122-020-03560-w PMid:32040676 PMCid:PMC7214393 Kulkarni S., Balachandran S., Ulaganathan K., Balakrishnan D., Praveen M., Prasad A., Fiyaz R., Senguttuvel P., Sinha P., Kale R., Rekha G., Kousik M., Harika G., Anila M., Punniakoti E., Dilip T., Hajira S., Pranathi K., Das M., Shaik M., Chaitra K., Rao P., Gangurde S., Pandey M., and Sundaram R., 2020, Molecular mapping of QTLs for yield related traits in recombinant inbred line (RIL) population derived from the popular rice hybrid KRH-2 and their validation through SNP genotyping, Scientific Reports, 10: 13695. https://doi.org/10.1038/s41598-020-70637-3 PMid:32792551 PMCid:PMC7427098 Ladejobi O., Mackay I., Poland J., Praud S., Hibberd J., and Bentley A., 2019, Reference genome anchoring of high-density markers for association mapping and genomic prediction in european winter wheat, Frontiers in Plant Science, 10: 1278. https://doi.org/10.3389/fpls.2019.01278 PMid:31781130 PMCid:PMC6857554 Liu H., Jian L., Xu J., Zhang Q., Zhang M., Jin M., Peng Y., Yan J., Han B., Liu J., Gao F., Liu X., Huang L., Wei W., Ding Y., Yang X., Li Z., Zhang M., Sun J., Bai M., Song W., Chen H., Sun X., Li W., Lu Y., Liu Y., Zhao J., Qian Y., Jackson D., Fernie A., and Yan J., 2020, High-throughput CRISPR/Cas9 mutagenesis streamlines trait gene identification in maize, Plant Cell, 32: 1397-1413. https://doi.org/10.1105/tpc.19.00934 PMid:32102844 PMCid:PMC7203946 Liu J., Luo W., Qin N., Ding P., Zhang H., Yang C., Mu Y., Tang H., Liu Y., Li W., Jiang Q., Chen G., Wei Y., Zheng Y., Liu C., Lan X., and Ma J., 2018, A 55 K SNP array-based genetic map and its utilization in QTL mapping for productive tiller number in common wheat, Theoretical and Applied Genetics, 131: 2439-2450. https://doi.org/10.1007/s00122-018-3164-9 PMid:30109392 Luo Q., Zheng Q., Hu P., Liu L., Yang G., Li H., Li B., and Li Z., 2020, Mapping QTL for agronomic traits under two levels of salt stress in a new constructed RIL wheat population, Theoretical and Applied Genetics, 134: 171-189. https://doi.org/10.1007/s00122-020-03689-8 PMid:32995899 Lv D., Zhang C., Yv R., Yao J., Wu J., Song X., Jian J., Song P., Zhang Z., Han D., and Sun D., 2021, Utilization of a wheat50K SNP microarray-derived high-density genetic map for QTL mapping of plant height and grain traits in wheat, Plants, 10(6): 1167. https://doi.org/10.3390/plants10061167 PMid:34201388 PMCid:PMC8229693 Maccaferri M., Ricci A., Salvi S., Milner S., Noli E., Martelli P., Casadio R., Akhunov E., Scalabrin S., Vendramin V., Ammar K., Blanco A., Desiderio F., Distelfeld A., Dubcovsky J., Fahima T., Faris J., Korol A., Massi A., Mastrangelo A., Morgante M., Pozniak C., N’Diaye A., Xu S., and Tuberosa R., 2015, A high-density, SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding, Plant biotechnology journal, 13(5): 648-663. https://doi.org/10.1111/pbi.12288 PMid:25424506 Marcotuli I., Gadaleta A., Mangini G., Signorile A., Zacheo S., Blanco A., Simeone R., and Colasuonno P., 2017, Development of a high-density SNP-based linkage map and detection of QTL for β-glucans, protein content, grain yield per spike and heading time in durum wheat, International Journal of Molecular Sciences, 18(6): 1329. https://doi.org/10.3390/ijms18061329 PMid:28635630 PMCid:PMC5486150 Muqaddasi Q., Jayakodi M., Börner A., and Röder M., 2019, Identification of consistent QTL with large effect on anther extrusion in doubled haploid populations developed from spring wheat accessions in German Federal ex situ Genebank, Theoretical and Applied Genetics, 132: 3035-3045. https://doi.org/10.1007/s00122-019-03404-2 PMid:31377817 Pal N., Jan I., Saini D., Kumar K., Kumar A., Sharma P., Kumar S., Balyan H., and Gupta P., 2022, Meta-QTLs for multiple disease resistance involving three rusts in common wheat (Triticum aestivumL.), Theoretical and Applied Genetics, 135: 2385-2405. https://doi.org/10.1007/s00122-022-04119-7 PMid:35699741
RkJQdWJsaXNoZXIy MjQ4ODYzNQ==