TGG_2024v15n2

Triticeae Genomics and Genetics, 2024, Vol.15, No.2, 100-110 http://cropscipublisher.com/index.php/tgg 110 Patil P., Shrivastav S., Kulbhushan P., Landge R., and Gurjar D., 2023, Genetic variability heritability genetic advance and divergence analysis in wheat (Triticum aestivumL.), Indian Journal Of Agricultural Research., 31: 47. https://doi.org/10.18805/IJARe.A-6036 Paux E., Lafarge S., Balfourier F., Derory J., Charmet G., Alaux M., Perchet G., Bondoux M., Baret F., Barillot R., Ravel C., Sourdille P., Gouis J., and Consortium O., 2022, Breeding for economically and environmentally sustainable wheat varieties: an integrated approach from genomics to selection, Biology, 11(1): 149. https://doi.org/10.3390/biology11010149 PMid:35053148 PMCid:PMC8773325 Pershina L., and Trubacheeva N., (2017, Interspecific incompatibility in the wide hybridization of plants and ways to overcome it, Russian Journal of Genetics: Applied Research, 7: 358-368. https://doi.org/10.1134/S2079059717040098 Rasheed A., Mujeeb-Kazi A., Ogbonnaya F., He Z., and Rajaram S., 2018, Wheat genetic resources in the post-genomics era: promise and challenges, Annals of Botany, 121: 603-616. https://doi.org/10.1093/aob/mcx148 PMid:29240874 PMCid:PMC5852999 Rauf S., Zaharieva M., Warburton M., Zhang P., Al-Sadi A., Khalil F., Kozak M., and Tariq S., 2015, Breaking wheat yield barriers requires integrated efforts in developing countries, Journal of Integrative Agriculture, 14: 1447-1474. https://doi.org/10.1016/S2095-3119(15)61035-8 Shafqat N., Shahzad A., Shah S., Mahmood Z., Sajid M., Ullah F., Islam M., Masood R., Jabeen N., and Zubair K., 2021, Characterization of wheat-Thinopyrumbessarabicum genetic stock for stripe rust and Karnal bunt resistance, Brazilian Journal of Biology, 83: e246440. https://doi.org/10.1590/1519-6984.246440 PMid:34550282 Trono D., and Pecchioni N., 2022, Candidate genes associated with abiotic stress response in plants as tools to engineer tolerance to drought salinity and extreme temperatures in wheat: an overview, Plants, 3: 11. https://doi.org/10.3390/plants11233358 PMid:36501397 PMCid:PMC9737347 Türkösi E., Darko E., Rakszegi M., Molnár I., Molnár-Láng M., and Cseh A., 2018, Development of a new 7BS.7HL winter wheat-winter barley Robertsonian translocation line conferring increased salt tolerance and (1,3;1,4)-β-D-glucan content, PLoS ONE, 4: 13. https://doi.org/10.1371/journal.pone.0206248 PMid:30395616 PMCid:PMC6218033 Whitford R., Fleury D., Reif J., Garcia M., Okada T., Korzun V., and Langridge P., 2013, Hybrid breeding in wheat: technologies to improve hybrid wheat seed production, Journal of Experimental Botany, 64(18): 5411-28. https://doi.org/10.1093/jxb/ert333 Wulff B., and Moscou M., 2014, Strategies for transferring resistance into wheat: from wide crosses to GM cassettes, Frontiers in Plant Science, 3: 5. https://doi.org/10.3389/fpls.2014.00692 Zhao Y., Li Z., Liu G., Jiang Y., Maurer H., Würschum T., Mock H., Matros A., Ebmeyer E., Schachschneider R., Kazman E., Schacht J., Gowda M., Longin C., and Reif J., 2015, Genome-based establishment of a high-yielding heterotic pattern for hybrid wheat breeding, Proceedings of the National Academy of Sciences, 112: 15624-15629. https://doi.org/10.1073/pnas.1514547112 PMid:26663911 PMCid:PMC4697414

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==