TGG_2024v15n2

Triticeae Genomics and Genetics, 2024, Vol.15, No.2, 100-110 http://cropscipublisher.com/index.php/tgg 109 References Ali N., Rahman I., Badakshi F., Tariq M., and Mujeeb-Kazi A., 2020, Ensuring sustainable food security: exploiting alien genetic diversity in wheat breeding for adaptation to emerging stresses, Climate Change and Food Security with Emphasis on Wheat, 2020: 31-42. https://doi.org/10.1016/B978-0-12-819527-7.00002-9 Alvarez J., and Guzmán C., 2018, Interspecific and intergeneric hybridization as a source of variation for wheat grain quality improvement, Theoretical and Applied Genetics, 131: 225-251. https://doi.org/10.1007/s00122-017-3042-x PMid:29285597 Anushma P., Dhanyasree K., and Rafeekher M., 2021, Wide hybridization for fruit crop improvement: a review, International Journal of Chemical Studies, 9(1): 769-773. https://doi.org/10.22271/CHEMI.2021.V9.I1K.11317 Bhalla P., Sharma A., and Singh M., 2017, Enabling molecular technologies for trait improvement in wheat, Methods in Molecular Biology, 1679: 3-24. https://doi.org/10.1007/978-1-4939-7337-8_1 PMid:28913791 Boeven P., Longin C., Leiser W., Kollers S., Ebmeyer E., and Würschum T., 2016, Genetic architecture of male floral traits required for hybrid wheat breeding, Theoretical and Applied Genetics, 129: 2343-2357. https://doi.org/10.1007/s00122-016-2771-6 PMid:27553082 Boeven P., Würschum T., Rudloff J., Ebmeyer E., and Longin C., 2018, Hybrid seed set in wheat is a complex trait but can be improved indirectly by selection for male floral traits., Euphytica 214: 1-13. https://doi.org/10.1007/s10681-018-2188-1 Cui Y., Li R., Li G., Zhang F., Zhu T., Zhang Q., Ali J., Li Z., and Xu S., 2019, Hybrid breeding of rice via genomic selection, Plant Biotechnology Journal, 18: 57-67. https://doi.org/10.1111/pbi.13170 PMid:31124256 PMCid:PMC6920338 Curwen-McAdams C., and Jones S., 2017, Breeding perennial grain crops based on wheat, Crop Science, 57: 1172-1188. https://doi.org/10.2135/cropsci2016.10.0869 Ishii T., Ueda T., Tanaka H., and Tsujimoto H., 2010, Chromosome elimination by wide hybridization between Triticeae or oat plant and pearl millet: pearl millet chromosome dynamics in hybrid embryo cells, Chromosome Research,18: 821-831. https://doi.org/10.1007/s10577-010-9158-3 PMid:20953694 Laugerotte J., Baumann U., and Sourdille P., 2022, Genetic control of compatibility in crosses between wheat and its wild or cultivated relatives, Plant Biotechnology Journal, 20: 812-832. https://doi.org/10.1111/pbi.13784 PMid:35114064 PMCid:PMC9055826 Li J., Yang J., Li Y., and Ma L., 2020, Current strategies and advances in wheat biology, Crop Journal, 8: 879-891. https://doi.org/10.1016/j.cj.2020.03.004 Li S., Zhang C., Li J., Yan L., Wang N., and Xia L., 2021, Present and future prospects for wheat improvement through genome editing and advanced technologies, Plant Communications, 2: 41. https://doi.org/10.1016/j.xplc.2021.100211 PMid:34327324 PMCid:PMC8299080 Li Z., Li B., Zheng Q., and Li H., 2015, Review and new progress in wheat wide hybridization for improving the resistance to biotic and abiotic stresses, Advances in Wheat Genetics: From Genome to Field. Springer, 3: 377-385. https://doi.org/10.1007/978-4-431-55675-6_43 Longin C., and Reif J., 2014, Redesigning the exploitation of wheat genetic resources, Trends in plant science, 19(10): 631-636. https://doi.org/10.1016/j.tplants.2014.06.012 PMid:25052155 Mondal S., Rutkoski J., Velu G., Singh P., Crespo-Herrera L., Guzmán C., Bhavani S., Lan C., He X., and Singh R., 2016, Harnessing diversity in wheat to enhance grain yield climate resilience disease and insect pest resistance and nutrition through conventional and modern breeding approaches., Frontiers in Plant Science, 5: 7. https://doi.org/10.3389/fpls.2016.00991 PMid:27458472 PMCid:PMC4933717 Mwangangi I., Muli J., and Neondo J., 2019, Plant hybridization as an alternative technique in plant breeding improvement, Asian Journal of Research in Crop Science, 4(1): 1-11. https://doi.org/10.9734/ajrcs/2019/v4i130059 Pang Y., Liu C., Wang D., Amand P., Bernardo A., Li W., He F., Li L., Wang L., Yuan X., Dong L., Su Y., Zhang H., Zhao M., Liang Y., Jia H., Shen X., Lu Y., Jiang H., Wu Y., Li A., Wang H., Kong L., Bai G., and Liu S., 2020, High-resolution genome-wide association study identifies genomic regions and candidate genes for important agronomic traits in wheat, Molecular plant, 33: 45. https://doi.org/10.1016/j.molp.2020.07.008 PMid:32702458

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==