TGG_2024v15n2

Triticeae Genomics and Genetics, 2024, Vol.15, No.2, 88-99 http://cropscipublisher.com/index.php/lgg 98 References ADhakal S., Liu X., Chu C., Yang Y., Rudd J., Ibrahim A., Xue Q., Devkota R., Baker J., Baker S., Simoneaux B., Opena G., Sutton R., Jessup K., Hui K., Wang S., Johnson C., Metz R., and Liu S., 2021, Genome-wide QTL mapping of yield and agronomic traits in two widely Adapteded winter wheat cultivars from multiple mega-environments, Peer J., 9: e12350. https://doi.org/10.7717/peerj.12350 PMid:34900409 PMCid:PMC8627123 Goel S., Singh K., Singh B., Grewal S., Dwivedi N., Alqarawi A.A., Abd_Allah E.F., Ahmad P., and Singh N.K., 2019, Analysis of genetic control and QTL mapping of essential wheat grain quality traits in a recombinant inbred population, PLoS ONE, 14(3): e0200669. https://doi.org/10.1371/journal.pone.0200669 PMid:30840619 PMCid:PMC6402682 Guo Y., Zhang G., Guo B., Qu C., Zhang M., Kong F., Zhao Y., and Li S., 2020, QTL mapping for quality traits using a high-density genetic map of wheat, PLoS ONE, 15(3): e0230601. https://doi.org/10.1371/journal.pone.0230601 PMid:32208463 PMCid:PMC7092975 Hu J., Wang X., Zhang G., Jiang P., Chen W., Hao Y., Ma X., Xu S., Jia J., Kong L., and Wang H., 2020, QTL mapping for yield-related traits in wheat based on four RIL populations, Theoretical and Applied Genetics, 133: 917-933. https://doi.org/10.1007/s00122-019-03515-w PMid:31897512 Hussain A., Ahmad M., Nafees M., Iqbal Z., Luqman M., Jamil M., Maqsood A., Mora-Poblete F., Ahmar S., Chen J., Alyemeni M., and Ahmad P., 2018, Analysis of genetic control and QTL mapping of essential wheat grain quality traits in a recombinant inbred population, PLoS ONE, 14(3): e0200669. Islam M., Ontoy J., and Subudhi P., 2019, Meta-analysis of quantitative trait loci associated with seedling-stage salt tolerance in rice (Oryza sativa L.), Plants, 8(2): 33. https://doi.org/10.3390/plants8020033 PMid:30699967 PMCid:PMC6409918 Ilyas N., Amjid M., Saleem M., Khan W., Wattoo F., Rana R., Maqsood R., Zahid A., Shah G., Anwar A., Ahmad M., Shaheen M., Riaz H., and Ansari M., 2019, Quantitative trait loci (QTL) mapping for physiological and biochemical attributes in a Pasban90/Frontana recombinant inbred lines (RILs) population of wheat (Triticum aestivum) under salt stress condition, Saudi Journal of Biological Sciences, 27: 341-351. https://doi.org/10.1016/j.sjbs.2019.10.003 PMid:31889856 PMCid:PMC6933172 Kang C., Mo, Y., Kim K., Kim K., Chun J., Park C., and Cho S., 2020, Mapping quantitative trait loci for yield potential traits in wheat recombinant inbred lines, Agronomy, 11(1): 22. https://doi.org/10.3390/agronomy11010022 Larson S., DeHaan L., Poland J., Zhang X., Dorn K., Kantarski T., Anderson J., Schmutz J., Grimwood J., Jenkins J., Shu S., Crain J., Robbins M., and Jensen K., 2019, Genome mapping of quantitative trait loci (QTL) controlling domestication traits of intermediate wheatgrass (Thinopyrum intermedium), Theoretical and Applied Genetics, 132: 2325-2351. https://doi.org/10.1007/s00122-019-03357-6 PMid:31172227 Li Q., Pan Z., Gao Y., Li T., Liang J., Zhang Z., Zhang H., Deng G., Long H., and Yu M., 2020, Quantitative trait locus (QTLs) mapping for quality traits of wheat based on high density genetic map combined with bulked segregant analysis RNA-seq (BSR-Seq) indicates that the basic 7S globulin gene is related to falling number, Frontiers in Plant Science, 11: 600788. https://doi.org/10.3389/fpls.2020.600788 PMid:33424899 PMCid:PMC7793810 Li X., Wasson A., Zwart A., Whan A., Ryan P., Forrest K., Hayden M., Chin S., Richards R., and Delhaize E., 2023, Physical mapping of QTLs for root traits in a population of recombinant inbred lines of hexaploid wheat, International Journal of Molecular Sciences, 24(13): 10492. https://doi.org/10.3390/ijms241310492 PMid:37445670 PMCid:PMC10341896 Liu J., Luo W., Qin N., Ding P., Zhang H., Yang C., Mu Y., Tang H., Liu Y., Li W., Jiang Q., Chen G., Wei Y., Zheng Y., Liu C., Lan X., and Ma J., 2018, A 55 K SNP array-based genetic map and its utilization in QTL mapping for productive tiller number in common wheat, Theoretical and Applied Genetics, 131: 2439-2450. https://doi.org/10.1007/s00122-018-3164-9 PMid:30109392 Liu T., Wu L., Gan X., Chen W., Liu B., Fedak G., Cao W., Chi D., Liu D., Zhang H., and Zhang B., 2020, Mapping quantitative trait loci for 1000-Grain weight in a double haploid population of common wheat, International Journal of Molecular Sciences, 21(11): 3960. https://doi.org/10.3390/ijms21113960 PMid:32486482 PMCid:PMC7311974 Lv D., Zhang C., Yv R., Yao J., Wu J., Song X., Jian J., Song P., Zhang Z., Han D., and Sun D., 2021, Utilization of a wheat50K SNP microarray-derived high-density genetic map for qtl mapping of plant height and grain traits in wheat, Plants, 10(6): 1167. https://doi.org/10.3390/plants10061167

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==