Triticeae Genomics and Genetics, 2024, Vol.15, No.2, 77-87 http://cropscipublisher.com/index.php/lgg 86 Bhowmik P., Ellison E., Polley B., Bollina V., Kulkarni M., Ghanbarnia K., Song H., Gao C., Voytas D., and Kagale S., 2018, Targeted mutagenesis in wheat microspores using CRISPR/Cas9, Scientific Reports, 8(1): 6502. https://doi.org/10.1038/s41598-018-24690-8 PMid:29695804 PMCid:PMC5916876 Cao Y., Zhang J., Wang R., Sun H., and Yan Y., 2022, Molecular characterization and SNP-based molecular marker development of two novel high molecular weight glutenin genes fromTriticum spelta L., International Journal of Molecular Sciences, 23(19): 11104. https://doi.org/10.3390/ijms231911104 PMid:36232404 PMCid:PMC9570065 Corsi B., Percival‐Alwyn L., Downie R., Venturini L., Iagallo E., Mantello C., McCormick-Barnes C., See P., Oliver R., Moffat C., and Cockram J., 2020, Genetic analysis of wheat sensitivity to the ToxB fungal effector from Pyrenophora tritici-repentis the causal agent of tan spot, Theoretical and Applied Genetics, 133: 935-950. https://doi.org/10.1007/s00122-019-03517-8 PMid:31915874 PMCid:PMC7021774 Efthymakis K., Clemente E., Marchioni M., Nicola M., Neri M., and Sallese M., 2020, An exploratory gene expression study of the intestinal mucosa of patients with non-celiac wheat sensitivity, International Journal of Molecular Sciences, 21(6): 1969. https://doi.org/10.3390/ijms21061969 PMid:32183058 PMCid:PMC7139384 Hussain B., Akpınar B., Alaux M., Algharib A., Sehgal D., Ali Z., Aradottir G., Batley J., Bellec A., Bentley A., Cagirici H., Cattivelli L., Choulet F., Cockram J., Desiderio F., Devaux P., Doğramacı M., Dorado G., Dreisigacker S., Edwards D., El-Hassouni K., Eversole K., Fahima T., Figueroa M., Gálvez S., Gill K., Govta L., Gul A., Hensel G., Hernández P., Crespo-Herrera L., Ibrahim A., Kilian B., Korzun V., Krugman T., Li Y., Liu S., Mahmoud A., Morgounov A., Muslu T., Naseer F., Ordon F., Paux E., Perović D., Reddy G., Reif J., Reynolds M., Roychowdhury R., Rudd J., Sen T., Sukumaran S., Ozdemir B., Tiwari V., Ullah N., Unver T., Yazar S., Appels R., and Budak H., 2022, Capturing wheat phenotypes at the genome level, Frontiers in Plant Science, 13: 851079. https://doi.org/10.3389/fpls.2022.851079 PMid:35860541 PMCid:PMC9289626 Jogam P., Sandhya D., Kumar P., Allini V., Abbagani S., and Alok A., 2021, Genetic transformation methods and advancement of CRISPR/Cas9 technology in wheat, Nanobiotechnology for Plant Protection, 2021: 253-275. https://doi.org/10.1016/B978-0-12-821910-2.00017-5 Juhász A., Belova T., Florides C., Maulis C., Fischer I., Gell G., Birinyi Z., Ong J., Keeble-Gagnère G., Maharajan A., Ma W., Gibson P., Jia J., Lang D., Mayer K., Spannagl M., Tye-Din J., Appels R., and Olsen O., 2018, Genome mapping of seed-borne allergens and immunoresponsive proteins in wheat, Science Advances, 4(8): eaar8602. https://doi.org/10.1126/sciadv.aar8602 PMid:30128352 PMCid:PMC6097586 Kim S., Hur G., Jin H., Choi H., and Park H., 2012, Effect of interleukin-18 gene polymorphisms on sensitization to wheat flour in bakery workers, Journal of Korean Medical Science, 27(4): 382-387. https://doi.org/10.3346/jkms.2012.27.4.382 PMid:22468101 PMCid:PMC3314850 Li J., Li Y., and Ma L., 2021, Recent advances in CRISPR/Cas9 and applications for wheat functional genomics and breeding, aBIOTECH, 2: 375-385. https://doi.org/10.1007/s42994-021-00042-5 PMid:36304421 PMCid:PMC9590522 Lombardo C., Bolla M., Chignola R., Senna G., Rossin G., Caruso B., Tomelleri C., Cecconi D., Brandolini A., and Zoccatelli G., 2015, Study on the Immunoreactivity of Triticum monococcum, Einkorn wheat in patients with wheat-dependent exercise-induced anaphylaxis for the production of hypoallergenic foods., Journal of Agricultural and Food Chemistry 63(37): 8299-8306. https://doi.org/10.1021/acs.jafc.5b02648 PMid:26332577 Mameri H., Bouchez I., Pecquet C., Raison-Peyron N., Choudat D., Chabane H., Kerre S., Denery-Papini S., Gohon Y., Briozzo P., Lauriére M., and Snégaroff J., 2012, A recombinant ω-gliadin-like D-type glutenin and an α-gliadin from wheat, Triticum aestivum: two immunoglobulin E binding proteins useful for the diagnosis of wheat-dependent allergies., Journal of Agricultural and Food Chemistry, 60(32): 8059-8068. https://doi.org/10.1021/jf301992w PMid:22809016 Moehs C., Austill W., Holm A., Large T., Loeffler D., Mullenberg J., Schnable P., Skinner W., Boxtel J., Wu L., and McGuire C., 2019, Development of decreased-gluten wheat enabled by determination of the genetic basis of lys3a Barley1, Plant Physiology, 179: 1692-1703. https://doi.org/10.1104/pp.18.00771 PMid:30696748 PMCid:PMC6446766 Mochida K., and Shinozaki K., 2013, Unlocking Triticeae genomics to sustainably feed the future, Plant and Cell Physiology, 54(12): 1931-1950. https://doi.org/10.1093/pcp/pct163
RkJQdWJsaXNoZXIy MjQ4ODYzNQ==