TGG_2024v15n2

Triticeae Genomics and Genetics, 2024, Vol.15, No.2, 66-76 http://cropscipublisher.com/index.php/tgg 74 Chen J., Xue M., Liu H., Fernie A., and Chen W., 2021, Exploring the genic resources underlying metabolites through mGWAS and mQTL in wheat: From large-scale gene identification and pathway elucidation to crop improvement, Plant Communications, 2(4): 100216. https://doi.org/10.1016/j.xplc.2021.100216 PMid:34327326 PMCid:PMC8299079 Chen Y., Song W., Xie X., Wang Z., Guan P., Peng H., Jiao Y., Ni Z., Sun Q., and Guo W., 2020, A Collinearity-incorporating homology inference strategy for connecting emerging assemblies in Triticeae tribe as a pilot practice in the plant pangenomic era, Molecular Plant, 13(12): 1694-1708. https://doi.org/10.1016/j.molp.2020.09.019 PMid:32979565 Chaudhari Y., Cairns T., Sidhu Y., Attah V., Thomas G., Csukai M., Talbot N., Studholme D., and Haynes K., 2019, The Zymoseptoria tritici ORFeome: a functional genomics community resource, Molecular Plant-Microbe Interactions: MPMI, 32: 12. https://doi.org/10.1094/MPMI-05-19-0123-A PMid:31272284 Gao Z., Bian J., Lu F., Jiao Y., and He H., 2023, Triticeae crop genome biology: an endless frontier, Frontiers in Plant Science, 14: 1222681. https://doi.org/10.3389/fpls.2023.1222681 PMid:37546276 PMCid:PMC10399237 Hasan N., Choudhary S., Naaz N., Sharma N., and Laskar R., 2021, Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes, Journal of Genetic Engineering & Biotechnology, 19(1): 128. https://doi.org/10.1186/s43141-021-00231-1 PMid:34448979 PMCid:PMC8397809 Hensel G., 2019, Genetic transformation of Triticeae cereals-Summary of almost three-decade's development, Biotechnology Advances, 40: 107484. https://doi.org/10.1016/j.biotechadv.2019.107484 PMid:31751606 Hussain B., Akpınar B., Alaux M., Algharib A., Sehgal D., Ali Z., Aradottir G., Batley J., Bellec A., Bentley A., Cagirici H., Cattivelli L., Choulet F., Cockram J., Desiderio F., Devaux, P., Doğramacı, M., Dorado, G., Dreisigacker, S., Edwards, D., El-Hassouni, K., Eversole, K., Fahima, T., Figueroa, M., Gálvez S., Gill K., Govta L., Gul A., Hensel G., Hernández P., Crespo-Herrera L., Ibrahim A., Kilian B., Korzun V., Krugman T., Li,Y., Liu S., Mahmoud A., Morgounov A., Muslu T., Naseer F., Ordon F., Paux E., Perović D., Reddy G., Reif J., Reynolds M., Roychowdhury R., Rudd J., Sen T., Sukumaran S., Ozdemir B., Tiwari V., Ullah N., Unver T., Yazar S., Appels R., and Budak H., 2022, Capturing wheat phenotypes at the genome level, Frontiers in Plant Science, 13: 851079. https://doi.org/10.3389/fpls.2022.851079 PMid:35860541 PMCid:PMC9289626 Jaganathan D., Ramasamy K., Sellamuthu G., Jayabalan S., and Venkataraman G., 2018, CRISPR for crop improvement: an update review, Frontiers in Plant Science, 9: 985. https://doi.org/10.3389/fpls.2018.00985 PMid:30065734 PMCid:PMC6056666 Joshi A., Yang S., Song H., Min J., and Lee J., 2023, Genetic databases and gene editing tools for enhancing crop resistance against abiotic stress, Biology, 12(11): 1400. https://doi.org/10.3390/biology12111400 PMid:37997999 PMCid:PMC10669554 Khalid A., Hameed A., and Tahir M., 2023, Wheat quality: A review on chemical composition, nutritional attributes, grain anatomy, types, classification, and function of seed storage proteins in bread making quality, Frontiers in Nutrition, 10: 1053196. https://doi.org/10.3389/fnut.2023.1053196 PMid:36908903 PMCid:PMC9998918 Kuluev B., Mikhailova E., Kuluev A., Galimova A., Zaikina E., and Khlestkina E., 2022, Genome editing in species of the tribe Triticeae with the CRISPR/Cas System, Molekuliarnaia Biologiia, 56(6): 949-968. https://doi.org/10.1134/S0026893322060127 Laugerotte J., Baumann U., and Sourdille P., 2022, Genetic control of compatibility in crosses between wheat and its wild or cultivated relatives, Plant Biotechnology Journal, 20: 812-832. https://doi.org/10.1111/pbi.13784 PMid:35114064 PMCid:PMC9055826 Li S., Zhang C., Li J., Yan L., Wang N., and Xia, L., 2021, Present and future prospects for wheat improvement through genome editing and advanced technologies, Plant Communications, 2(4): 100211. https://doi.org/10.1016/j.xplc.2021.100211 PMid:34327324 PMCid:PMC8299080 Liu H., Able A., and Able J., 2020, Multi-omics analysis of small RNA, transcriptome, and degradome in T. turgidum—regulatory networks of grain development and abiotic stress response, International Journal of Molecular Sciences, 21(20): 7772. https://doi.org/10.3390/ijms21207772 PMid:33096606 PMCid:PMC7589925

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==