TGG_2024v15n1

Triticeae Genomics and Genetics, 2024, Vol.15, No.1, 56-65 http://cropscipublisher.com/index.php/tgg 65 Kilian B., Özkan H., Kohl J., Haeseler A., Barale F., Deusch O., Brandolini A., Yucel C., Martin W., and Salamini F., 2006, Haplotype structure at seven barley genes: relevance to gene pool bottlenecks, phylogeny of ear type and site of barley domestication, Molecular Genetics and Genomics, 276: 230-241. https://doi.org/10.1007/s00438-006-0136-6 PMid:16758198 Muñoz‐Amatriaín M., Eichten S., Wicker T., Richmond T., Mascher M., Steuernagel B., Scholz U., Ariyadasa R., Spannagl M., Nussbaumer T., Mayer K., Taudien S., Platzer M., Jeddeloh J., Springer N., Muehlbauer G., and Stein N., 2013, Distribution, functional impact, and origin mechanisms of copy number variation in the barley genome, Genome Biology, 14: R58. https://doi.org/10.1186/gb-2013-14-6-r58 PMid:23758725 PMCid:PMC3706897 Pourkheirandish M., Hensel G., Kilian B., Senthil N., Chen G., Sameri M., Azhaguvel P., Sakuma S., Dhanagond S., Sharma R., Mascher M., Himmelbach A., Gottwald S., Nair S., Tagiri A., Yukuhiro F., Nagamura Y., Kanamori H., Matsumoto T., Willcox G., Middleton C., Wicker T., Walther A., Waugh R., Fincher G., Stein N., Kumlehn J., Sato K., and Komatsuda T., 2015,. Evolution of the grain dispersal system in barley, Cell, 162: 527-539. https://doi.org/10.1016/j.cell.2015.07.002 PMid:26232223 Ramsay L., Comadran J., Druka A., Marshall D., Thomas W., Macaulay M., MacKenzie K., Simpson C., Fuller J., Bonar N., Hayes P., Lundqvist U., Franckowiak J., Close T., Muehlbauer G., and Waugh R., 2011, INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1, Nature Genetics, 43: 169-172. https://doi.org/10.1038/ng.745 PMid:21217754 Ranwez V., Serra A., Pot D., and Chantret N., 2017, Domestication reduces alternative splicing expression variations in sorghum, PLoS ONE, 12(9): e0183454. https://doi.org/10.1371/journal.pone.0183454 PMid:28886042 PMCid:PMC5590825 Russell J., Dawson I., Flavell A., Steffenson B., Weltzien E., Booth A., Ceccarelli S., Grando S., and Waugh R., 2011, Analysis of >1000 single nucleotide polymorphisms in geographically matched samples of landrace and wild barley indicates secondary contact and chromosome-level differences in diversity around domestication genes, The New Phytologist, 191(2): 564-578. https://doi.org/10.1111/j.1469-8137.2011.03704.x PMid:21443695 Smýkal P., Nelson M., Berger J., and Wettberg E., 2018, The Impact of Genetic Changes during Crop Domestication, Agronomy, 8(3): 26. https://doi.org/10.3390/AGRONOMY8030026 Takahagi K., Uehara-Yamaguchi Y., Yoshida T., Sakurai T., Shinozaki K., Mochida K., and Saisho D., 2016, Analysis of single nucleotide polymorphisms based on RNA sequencing data of diverse bio-geographical accessions in barley, Scientific Reports, 6: 33199. https://doi.org/10.1038/srep33199 PMid:27616653 PMCid:PMC5018957 Tenaillon M., U’Ren J., Tenaillon O., and Gaut B., 2004, Selection versus demography: a multilocus investigation of the domestication process in maize, Molecular Biology and Evolution, 21(7): 1214-1225. https://doi.org/10.1093/MOLBEV/MSH102 PMid:15014173 Yan S., Sun D., and Sun G., 2015, Genetic Divergence in domesticated and non-domesticated gene regions of barley chromosomes, PLoS ONE, 10(3): e0121106. https://doi.org/10.1371/journal.pone.0121106 PMid:25812037 PMCid:PMC4374956 Zhu Q., Zheng X., Luo J., Gaut B., and Ge S., 2007, Multilocus analysis of nucleotide variation of Oryza sativa and its wild relatives: severe bottleneck during domestication of rice, Molecular Biology and Evolution, 24(3): 875-888. https://doi.org/10.1093/MOLBEV/MSM005

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==