Rice Genomics and Genetics 2025, Vol.16, No.5, 245-253 http://cropscipublisher.com/index.php/rgg 253 Nunez-Vazquez R., Desvoyes B., and Gutiérrez C., 2022, Histone variants and modifications during abiotic stress response, Frontiers in Plant Science, 13: 984702. https://doi.org/10.3389/fpls.2022.984702 Osakabe A., Lorković Z., Kobayashi W., Tachiwana H., Yelagandula R., Kurumizaka H., and Berger F., 2018, Histone H2A variants confer specific properties to nucleosomes and impact on chromatin accessibility, Nucleic Acids Research, 46: 7675-7685. https://doi.org/10.1093/nar/gky540 Probst A., 2022, Deposition and eviction of histone variants define functional chromatin states in plants, Current Opinion in Plant Biology, 69: 102266. https://doi.org/10.1016/j.pbi.2022.102266 Shang L., Li X., He H., Yuan Q., Song Y., Wei Z., Lin H., Hu M., Zhao F., Zhang C., Li Y., Gao H., Wang T., Liu X., Zhang H., Zhang Y., Cao S., Yu X., Zhang B., Zhang Y., Tan Y., Qin M., Ai C., Yang Y., Zhang B., Hu Z., Wang H., Lv Y., Wang Y., Ma J., Wang Q., Lu H., Wu Z., Liu S., Sun Z., Zhang H., Guo L., Li Z., Zhou Y., Li J., Zhu Z., Xiong G., Ruan J., and Qian Q., 2022, A super pan-genomic landscape of rice, Cell Research, 32: 878-896. https://doi.org/10.1038/s41422-022-00685-z Sokolova V., Sarkar S., and Tan D., 2022, Histone variants and chromatin structure, update of advances, Computational and Structural Biotechnology Journal, 21: 299-311. https://doi.org/10.1016/j.csbj.2022.12.002 Tao Z., Kou Y., Liu H., Li X., Xiao J., and Wang S., 2011, OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice, Journal of Experimental Botany, 62(14): 4863-4874. https://doi.org/10.1093/jxb/err144 Wang P., Xiong Y., Gong R., Yang Y., Fan K., and Yu S., 2019, A key variant in the cis-regulatory element of flowering gene Ghd8 associated with cold tolerance in rice, Scientific Reports, 9: 9603. https://doi.org/10.1038/s41598-019-45794-9 Wang S., Wu K., Qian Q., Liu Q., Li Q., Pan Y., Ye Y., Liu X., Wang J., Zhang J., Li S., Wu Y., and Fu X., 2017, Non-canonical regulation of SPL transcription factors by a human OTUB1-like deubiquitinase defines a new plant type rice associated with higher grain yield, Cell Research, 27: 1142-1156. https://doi.org/10.1038/cr.2017.98 Wang Y., Li F., Zhang F., Wu L., Xu N., Sun Q., Chen H., Yu Z., Lu J., Jiang K., Wang X., Wen S., Zhou Y., Zhao H., Jiang Q., Wang J., Jia R., Sun J., Tang L., Xu H., Hu W., Xu Z., Chen W., Guo A., and Xu Q., 2022, Time‐ordering japonica/geng genomes analysis indicates the importance of large structural variants in rice breeding, Plant Biotechnology Journal, 21: 202-218. https://doi.org/10.1111/pbi.13938 Yan Y., Wei M., Li Y., Tao H., Wu H., Chen Z., Li C., and Xu J., 2021, MiR529a controls plant height, tiller number, panicle architecture and grain size by regulating SPLtarget genes in rice (Oryza sativaL.), Plant Science, 302: 110728. https://doi.org/10.1016/j.plantsci.2020.110728 Zheng X., Pang H., Wang J., Yao X., Song Y., Li F., Lou D., Ge J., Zhao Z., Qiao W., Kim S., Ye G., Olsen K., Liu C., and Yang Q., 2021, Genomic signatures of domestication and adaptation during geographical expansions of rice cultivation, Plant Biotechnology Journal, 20: 16-18. https://doi.org/10.1111/pbi.13730 Zheng X., Zhong L., Pang H., Wen S., Li F., Lou D., Ge J., Fan W., Wang T., Han Z., Qiao W., Pan X., Zhu Y., Wang J., Tang C., Wang X., Zhang J., Xu Z., Kim S., Kohli A., Ye G., Olsen K., Fang W., and Yang Q., 2023, Lost genome segments associate with trait diversity during rice domestication, BMC Biology, 21: 20. https://doi.org/10.1186/s12915-023-01512-6
RkJQdWJsaXNoZXIy MjQ4ODYzNA==