Rice Genomics and Genetics 2025, Vol.16, No.5, 245-253 http://cropscipublisher.com/index.php/rgg 252 Guo H., Gao S., Li H., Yang J., Li J., Gu Y., Lou Q., Su R., Ye W., Zou A., Wang Y., Sun X., Zhang Z., Zhang H., Zeng Y., Yuan P., Peng Y., Li Z., and Li J., 2025, Natural variation of CTB5 confers cold adaptation in plateaujaponica rice, Nature Communications, 16: 1032. https://doi.org/10.1038/s41467-025-56174-5 Harvey W., Ebert P., Ebler J., Audano P., Munson K., Hoekzema K., Porubsky D., Beck C., Marschall T., Garimella K., and Eichler E., 2023, Whole-genome long-read sequencing downsampling and its effect on variant-calling precision and recall, Genome Research, 33: 2029-2040. https://doi.org/10.1101/gr.278070.123 Jiang D., and Berger F., 2023, Variation is important: warranting chromatin function and dynamics by histone variants, Current Opinion in Plant Biology, 75: 102408. https://doi.org/10.1016/j.pbi.2023.102408 Jiao Y., Wang Y., Xue D., Wang J., Yan M., Liu G., Dong G., Zeng D., Lu Z., Zhu X., Qian Q., and Li J., 2010, Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice, Nature Genetics, 42: 541-544. https://doi.org/10.1038/ng.591 Karavolias N., Patel-Tupper D., Cruz A., Litvak L., Lieberman S., Tjahjadi M., Niyogi K., Cho M., and Staskawicz B., 2024, Engineering quantitative stomatal trait variation and local adaptation potential by cis‐regulatory editing, Plant Biotechnology Journal, 22: 3442-3452. https://doi.org/10.1111/pbi.14464 Kobayashi N., Yamaji N., Yamamoto H., Ôkubo K., Ueno H., Costa A., Tanoi K., Matsumura H., Fujii-Kashino M., Horiuchi T., Nayef M., Shabala S., An G., Ma J., and Horie T., 2017, OsHKT1;5 mediates Na+ exclusion in the vasculature to protect leaf blades and reproductive tissues from salt toxicity in rice, The Plant Journal, 91(4): 657-670. https://doi.org/10.1111/tpj.13595 Kou Y., Liao Y., Toivainen T., Lv Y., Tian X., Emerson J., Gaut B., Zhou Y., and Purugganan M., 2020, Evolutionary genomics of structural variation in Asian rice (Oryza sativa) domestication, Molecular Biology and Evolution, 37: 3507-3524. https://doi.org/10.1093/molbev/msaa185 Lang D., Zhang S., Ren P., Liang F., Sun Z., Meng G., Tan Y., Li X., Lai Q., Han L., Wang D., Hu F., Wang W., and Liu S., 2020, Comparison of the two up-to-date sequencing technologies for genome assembly: HiFi reads of Pacific Biosciences Sequel II system and ultralong reads of Oxford Nanopore, GigaScience, 9(12): giaa123. https://doi.org/10.1093/gigascience/giaa123 Lee D., Chung P., Jeong J., Jang G., Bang S., Jung H., Kim Y., Ha S., Choi Y., and Kim J., 2017, The rice OsNAC6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance, Plant Biotechnology Journal, 15: 754-764. https://doi.org/10.1111/pbi.12673 Li J.Q., 2024, Harnessing entomopathogenic fungi for pest control in rice: case studies and efficacy, Molecular Microbiology Research, 14(1): 92-98. https://doi.org/10.5376/mmr.2024.14.0010 Li J., Zeng Y., Pan Y., Zhou L., Zhang Z., Guo H., Lou Q., Shui G., Huang H., Tian H., Guo Y., Yuan P., Yang H., Pan G., Wang R., Zhang H., Yang S., Guo Y., Ge S., Li J., and Li Z., 2021, Stepwise selection of natural variations at CTB2 and CTB4a improves cold adaptation during domestication of japonica rice, The New Phytologist, 231(3): 1056-1072. https://doi.org/10.1111/nph.17407 Li X., Dai X., He H., Chen W., Qian Q., Shang L., Guo L., and He W., 2025, Uncovering the breeding contribution of transposable elements from landraces to improved varieties through pan-genome-wide analysis in rice, Frontiers in Plant Science, 16: 1573546. https://doi.org/10.3389/fpls.2025.1573546 Lian L., Xu H., Zhang H., He W., Cai Q., Lin Y., Wei L., Pan L., Xie X., Zheng Y., Wei Y., Zhu Y., Xie H., and Zhang J., 2020, Overexpression of OsSPL14 results in transcriptome and physiology changes in indica rice ‘MH86’, Plant Growth Regulation, 90: 265-278. https://doi.org/10.1007/s10725-019-00569-0 Liu C., Zhu X., Zhang J., Shen M., Chen K., Fu X., Ma L., Liu X., Zhou C., Zhou D., and Wang G., 2022, eQTLs play critical roles in regulating gene expression and identifying key regulators in rice, Plant Biotechnology Journal, 20(12): 2357-2371. https://doi.org/10.1111/pbi.13912 Liu Y., Chen X., Xue S., Quan T., Cui D., Han L., Cong W., Li M., Yun D., Liu B., and Xu Z., 2021, SET DOMAIN GROUP 721 protein functions in saline–alkaline stress tolerance in the model rice variety Kitaake, Plant Biotechnology Journal, 19: 2576-2588. https://doi.org/10.1111/pbi.13683 Lou D., Wang H., Liang G., and Yu D., 2017, OsSAPK2 confers abscisic acid sensitivity and tolerance to drought stress in rice, Frontiers in Plant Science, 8: 993. https://doi.org/10.3389/fpls.2017.00993 Lou Q., Guo H., Li J., Han S., Khan N., Gu Y., Zhao W., Zhang Z., Zhang H., Li Z., and Li J., 2022, Cold-adaptive evolution at the reproductive stage in geng/japonica subspecies reveals the role of OsMAPK3 and OsLEA9, The Plant Journal, 111(4): 1032-1051. https://doi.org/10.1111/tpj.15870 Lyu J., 2024, Meta-analysis of genetic resistance to major rice pests and pathogens, Molecular Pathogens, 15(6): 273-281. https://doi.org/10.5376/mp.2024.15.0027 Negrão S., Almadanim M., Pires I., Abreu I., Marôco J., Courtois B., Gregorio G., McNally K., and Oliveira M., 2013, New allelic variants found in key rice salt-tolerance genes: an association study, Plant Biotechnology Journal, 11(1): 87-100. https://doi.org/10.1111/pbi.12010
RkJQdWJsaXNoZXIy MjQ4ODYzNA==