Rice Genomics and Genetics 2025, Vol.16, No.4, 219-236 http://cropscipublisher.com/index.php/rgg 235 Fujita N., Yoshida M., Kondo T., Saito K., Utsumi Y., Tokunaga T., Nishi A., Satoh H., Park J.H., and Jane J.L., 2007, Characterization of SSIIIa‑ deficient mutants of rice: the function of SSIIIa and pleiotropic effects by SSIIIa deficiency in the rice endosperm, Plant Physiology, 144(4): 2009-2023. https://doi.org/10.1104/pp.107.102533 Gao J., Gao L., Chen W., Huang J., Qing D., Pan Y., Ma C., Wu H., Zhou W., Li J., Yang X., Dai G., and Deng G., 2024, Genetic effects of grain quality enhancement in indica hybrid rice: insights for molecular design breeding, Rice, 17: 39. https://doi.org/10.1186/s12284-024-00719-7 Gao Z.Y., Zeng D.L., Cheng F.M., Tian Z.X., Guo L.B., Su Y., Yan M.X., Jiang H., Dong G.J., Han B., Li J.Y., and Qian Q., 2011, ALK, the key gene for gelatinization temperature, is a modifier gene for gel consistency in rice, Journal of Integrative Plant Biology, 53(9): 756-765. https://doi.org/10.1111/j.1744-7909.2011.01065.x Han H., Yang C., Zhu J., Zhang L., Bai Y., Li E., and Gilbert R.G., 2019, Competition between granule-bound starch synthase and starch branching enzyme in starch biosynthesis, Rice, 12: 96. https://doi.org/10.1186/s12284-019-0353-3 Han J., Guo Z., Wang M., Liu S., Hao Z., Zhang D., Yong H., Weng J., Zhou Z., Li M., and Li X., 2022, Using the dominant mutation gene Ae1-5180 (amylose extender) to develop high-amylose maize, Molecular Breeding, 42: 57. https://doi.org/10.1007/s11032-022-01323-7 Huang Y.M., 2024, Genomic insights into grain size and weight: the GS2 gene’s role in rice yield improvement, Plant Gene and Trait, 15(3): 141-151. https://doi.org/10.5376/pgt.2024.15.0015 Huang L., Li Q., Zhang C., Chu R., Gu Z., Tan H., Zhao D., Fan X., and Liu Q., 2020, Creating novel Wx alleles with fine‑ tuned amylose levels and improved grain quality in rice by promoter editing using CRISPR/Cas9 system, Plant Biotechnology Journal, 18(11): 2164-2166. https://doi.org/10.1111/pbi.13391 Ma H.L., 2024, Advanced genetic tools for rice breeding: CRISPR/Cas9 and its role in yield trait improvement, Molecular Plant Breeding, 15(4): 178-186. https://doi.org/10.5376/mpb.2024.15.0018 Mao H., Peng Y., Mao B.G., Shao Y., Zheng W.J., Hu L.M., Zhou K., and Zhao B.R., 2022, Function and effect analysis of a new gene Wx410 regulating amylose synthesis in rice, Chinese Journal of Rice Science, 36(6): 579-585. https://doi.org/10.16819/j.1001-7216.2022.220103 Miura S., Ohnishi S., Kurata N., and Yamazaki K., 2024, Mutations in Starch-Branching Enzyme 2a increase resistant starch content in barley endosperm, Theoretical and Applied Genetics, 137: 1021-1030. https://doi.org/10.1007/s00122-024-04725-7 Peng T., Sun H., Du Y., Zhang J., Li J., Liu Y., Zhao Y., and Zhao Q., 2013, Characterization and expression patterns of microRNAs involved in rice grain filling, PLOS ONE, 8(1): e54148. https://doi.org/10.1371/journal.pone.0054148 Shao Y., Peng Y., Mao B., Lv Q., Yuan D., Liu X., and Zhao B., 2020, Allelic variations of the Wx locus in cultivated rice and their use in the development of hybrid rice in China, PLOS ONE, 15(5): e0232279. https://doi.org/10.1371/journal.pone.0232279 Sun Y., Jiao G., Liu Z., Zhang X., Li J., Guo X., Du W., Du J., Francis F., Zhao Y., and Xia L., 2017, Generation of high‑ amylose rice through CRISPR/Cas9‑ mediated targeted mutagenesis of starch branching enzymes, Frontiers in Plant Science, 8: 298. https://doi.org/10.3389/fpls.2017.00298 Tang S., Yang C., Wang D., Deng X., Cao X., and Song X., 2022, Targeted DNA demethylation produces heritable epialleles in rice, Science China Life Sciences, 65: 753-756. https://doi.org/10.1007/s11427-021-1974-7 Wang J.C., Xu H., Zhu Y., Liu Q.Q., and Cai X.L., 2013, OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm, Journal of Experimental Botany, 64(11): 3453-3466. https://doi.org/10.1093/jxb/ert187 Yamakawa H., and Hakata M., 2010, Atlas of rice grain-filling-related gene expression: a platform to identify grain quality determinants, Plant Molecular Biology, 72: 513-528. https://doi.org/10.1007/s11103-009-9603-5 Yang G.L., Chen S.P., Chen L.K., Gao W.W., Huang Y.T., Huang C.H., Zhou D.H., Wang J.F., Liu Y.Z., Huang M., Xiao W.M., Wang H., Guo T., and Chen Z.Q., 2019, Development and utilization of functional KASP markers to improve rice eating and cooking quality through MAS breeding, Euphytica, 215: 66. https://doi.org/10.1007/s10681-019-2392-7 Yao S., Chen T., Zhang Y.D., Zhu Z., Zhao L., Zhao Q.Y., Zhou L.H., and Wang C.L., 2010, Pyramiding of translucent endosperm mutant gene Wx‑ mq and rice stripe disease resistance gene Stv‑ bi bymarker‑ assisted selection in rice (Oryza sativa), Chinese Journal of Rice Sciences, 24(4): 341-347. https://doi.org/10.3969/j.issn.1000-7240.2010.04.005 Ying Y., Xu F., Zhang Z., Tappiban P., and Bao J., 2022, Dynamic change in starch biosynthetic enzymes complexes during grain-filling stages in BEIIb active and deficient rice, International Journal of Molecular Sciences, 23(18): 10714. https://doi.org/10.3390/ijms231810714 Zhao S.L., Cao R.J., Sun L.H., Zhuang D.Y., Zhong M., Zhao F.L., Jiao G.A., Chen P.F., Li X.W., Duan Y.Q., Li X.X., Tang S.Q., Ni S., Hu P.S., and Wei X.J., 2024, An integrative analysis of the transcriptome and proteome of rice grain under high temperature stress during grain filling, Plants, 13(23): 3309. https://doi.org/10.3390/plants13233309
RkJQdWJsaXNoZXIy MjQ4ODYzNA==