RGG_2025v16n3

Rice Genomics and Genetics 2025, Vol.16, No.3, 150-158 http://cropscipublisher.com/index.php/rgg 158 Piacentini D., Della Rovere F., Lanni F., Cittadini M., Palombi M., Fattorini L., Cecchetti V., Altamura M.M., and Falasca G., 2023, Brassinosteroids interact with nitric oxide in the response of rice root systems to arsenic stress, Environmental and Experimental Botany, 209: 105287. https://doi.org/10.1016/j.envexpbot.2023.105287 Shahzad Z., and Amtmann A., 2017, Food for thought: how nutrients regulate root system architecture, Current Opinion in Plant Biology, 39: 80-87. https://doi.org/10.1016/j.pbi.2017.06.008 Sharma M., Singh D., Saksena H., Sharma M., Tiwari A., Awasthi P., Botta H., Shukla B., and Laxmi A., 2021, Understanding the intricate web of phytohormone signalling in modulating root system architecture, International Journal of Molecular Sciences, 22(11): 5508. https://doi.org/10.3390/ijms22115508 Sharma S., Pinson S., Gealy D., and Edwards J., 2021, Genomic prediction and QTL mapping of root system architecture and above-ground agronomic traits in rice (Oryza sativa L.) with a multitrait index and Bayesian networks, G3, 11(10): jkab178. https://doi.org/10.1093/G3JOURNAL/JKAB178 Teramoto S., Takayasu S., Kitomi Y., Arai-Sanoh Y., Tanabata T., and Uga Y., 2020, High-throughput three-dimensional visualization of root system architecture of rice using X-ray computed tomography, Plant Methods, 16: 1-14. https://doi.org/10.1186/s13007-020-00612-6 Tripathi D.K., Rai P., Guerriero G., Sharma S., Corpas F.J., and Singh V.P., 2021, Silicon induces adventitious root formation in rice under arsenate stress with involvement of nitric oxide and indole-3-acetic acid, Journal of Experimental Botany, 72(12): 4457-4471. https://doi.org/10.1093/jxb/eraa488 Wedger M., Topp C., and Olsen K., 2019, Convergent evolution of root system architecture in two independently evolved lineages of weedy rice, The New Phytologist, 223(2): 1031-1042. https://doi.org/10.1111/nph.15791 Xiong Q., Hu J., Wei H., Zhang H., and Zhu J., 2021, Relationship between plant roots, rhizosphere microorganisms, and nitrogen and its special focus on rice, Agriculture, 11(3): 234. https://doi.org/10.3390/agriculture11030234 Xu P., Fang S., Chen H., and Cai W., 2020, The Brassinosteroid (BR) responsive Xyloglucan Endotransglucosylase/Hydrolase 19 (XTH19) and XTH23 genes are involved in lateral root development under salt stress in Arabidopsis, The Plant Journal, 104(1): 59-75. https://doi.org/10.1111/tpj.14905 Ye H., Roorkiwal M., Valliyodan B., Zhou L., Chen P., Varshney R., and Nguyen H., 2018, Genetic diversity of root system architecture in response to drought stress in grain legumes, Journal of Experimental Botany, 69: 3267-3277. https://doi.org/10.1093/jxb/ery082 Yoshino K., Numajiri Y., Teramoto S., Kawachi N., Tanabata T., Tanaka T., Hayashi T., Kawakatsu T., and Uga Y., 2019, Towards a deeper integrated multi-omics approach in the root system to develop climate-resilient rice, Molecular Breeding, 39: 165. https://doi.org/10.1007/s11032-019-1058-4 Zhao J., Jiang L., Bai H., Dai Y., Li K., Li S., Wang X., Wu L., Fu Q., Yang Y., Dong Q., Yu S., Wang M., Liu H., Peng Z., Zhu H., Zhang X., He X., Lei Y., Liang Y., Guo L., Zhang H., Yu D., Liu Y., Huang H., Liu C., Peng S., and Du Y., 2022, Characteristics of members of IGT family genes in controlling rice root system architecture and tiller development, Frontiers in Plant Science, 13: 961658. https://doi.org/10.3389/fpls.2022.961658 Zhang T.Q., Chen Y., Liu Y., Lin W.H., and Wang J.W., 2021, Single-cell transcriptome atlas and chromatin accessibility landscape reveal differentiation trajectories in the rice root, Nature Communications, 12(1): 2053. https://doi.org/10.1038/s41467-021-22352-4

RkJQdWJsaXNoZXIy MjQ4ODYzNA==