Rice Genomics and Genetics 2025, Vol.16, No.3, 140-149 http://cropscipublisher.com/index.php/rgg 148 Pan C., and Qi Y., 2023, CRISPR-Combo-mediated orthogonal genome editing and transcriptional activation for plant breeding, Nature Protocols, 18: 1760-1794. https://doi.org/10.1038/s41596-023-00823-w Pan C., Wu X., Markel K., Malzahn A., Kundagrami N., Sretenovic S., Zhang Y., Cheng Y., Shih P., and Qi Y., 2021, CRISPR-Act3.0 for highly efficient multiplexed gene activation in plants, Nature Plants, 7: 942-953. https://doi.org/10.1038/s41477-021-00953-7 Patel-Tupper D., Kelikian A., Leipertz A., Maryn N., Tjahjadi M., Karavolias N., Cho M., and Niyogi K., 2023, Multiplexed CRISPR-Cas9 mutagenesis of rice PSBS1 noncoding sequences for transgene-free overexpression, Science Advances, 10: 1-33. https://doi.org/10.1101/2023.10.20.563333 Ren J., Hu X., Wang K., and Wang C., 2019, Development and application of CRISPR/Cas system in rice, Rice Science, 26(2): 69-76. https://doi.org/10.1016/J.RSCI.2019.01.001 Rengasamy B., Manna M., Thajuddin N., Sathiyabama M., and Sinha A., 2024, Breeding rice for yield improvement through CRISPR/Cas9 genome editing method: current technologies and examples, Physiology and Molecular Biology of Plants, 30(2): 185-198. https://doi.org/10.1007/s12298-024-01423-y Sahoo L., Mohapatra D., Swain S., Kanaka S., and Sinha V., 2023, CRISPR-Cas9 technology and its impact on plant biology, Journal of Plant Biota, 2(2): 1-4. https://doi.org/10.51470/jpb.2023.02.02.01 Shen L., Hua Y., Fu Y., Li J., Liu Q., Jiao X., Xin G., Wang J., Wang X., Yan C., and Wang K., 2017, Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice, Science China Life Sciences, 60: 506-515. https://doi.org/10.1007/s11427-017-9008-8 Shimatani Z., Kashojiya S., Takayama M., Terada R., Arazoe T., Ishii H., Teramura H., Yamamoto T., Komatsu H., Miura K., Ezura H., Nishida K., Ariizumi T., and Kondo A., 2017, Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion, Nature Biotechnology, 35: 441-443. https://doi.org/10.1038/nbt.3833 Son S., and Park S., 2022, Challenges facing CRISPR/Cas9-based genome editing in plants, Frontiers in Plant Science, 13: 902413. https://doi.org/10.3389/fpls.2022.902413 Thiruppathi A., Salunkhe S., Ramasamy S., Palaniswamy R., Rajagopalan V., Rathnasamy S., Alagarswamy S., Swaminathan M., Manickam S., and Muthurajan R., 2024, Unleashing the potential of CRISPR/Cas9 genome editing for yield-related traits in rice, Plants, 13(21): 2972. https://doi.org/10.3390/plants13212972 Usman B., Nawaz G., Zhao N., Liu Y., and Li R., 2020, Generation of high yielding and fragrant rice (Oryza sativa L.) lines by CRISPR/Cas9 targeted mutagenesis of three homoeologs of cytochrome P450 gene family and OsBADH2 and transcriptome and proteome profiling of revealed changes triggered by mutations, Plants, 9(6): 788. https://doi.org/10.3390/plants9060788 Wada N., Ueta R., Osakabe Y., and Osakabe K., 2020, Precision genome editing in plants: state-of-the-art in CRISPR/Cas9-based genome engineering, BMC Plant Biology, 20: 234. https://doi.org/10.1186/s12870-020-02385-5 Wang M., Mao Y., Lu Y., Wang Z., Tao X., and Zhu J., 2018, Multiplex gene editing in rice with simplified CRISPR-Cpf1 and CRISPR-Cas9 systems, Journal of Integrative Plant Biology, 60(8): 626-631. https://doi.org/10.1111/jipb.12667 Wang Y., Geng L., Yuan M., Wei J., Jin C., Li M., Yu K., Zhang Y., Jin H., Wang E., Chai Z., Fu X., and Li X., 2017, Deletion of a target gene in indica rice via CRISPR/Cas9, Plant Cell Reports, 36: 1333-1343. https://doi.org/10.1007/s00299-017-2158-4 Wu S., Kyaw H., Tong Z., Yang Y., Wang Z., Zhang L., Deng L., Zhang Z., Xiao B., Quick W., Lu T., Xiao G., Qin G., and Cui X., 2024, A simple and efficient CRISPR/Cas9 system permits ultra-multiplex genome editing in plants, The Crop Journal, 12(2): 569-582. https://doi.org/10.1016/j.cj.2024.01.010 Xie K., Minkenberg B., and Yang Y., 2015, Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system, Proceedings of the National Academy of Sciences, 112: 3570-3575. https://doi.org/10.1073/pnas.1420294112 Xiong J., Wang C., and Wang K., 2023, Construction of CRISPR/Cas9 multiplex genome editing system in rice, Methods in Molecular Biology, 2653: 107-114. https://doi.org/10.1007/978-1-0716-3131-7_7 Yadav B., Majhi A., Phagna K., Meena M., and Ram H., 2023, Negative regulators of grain yield and mineral contents in rice: potential targets for CRISPR-Cas9-mediated genome editing, Functional & Integrative Genomics, 23: 317. https://doi.org/10.1007/s10142-023-01244-4 Zeng Y., Wen J., Zhao W., Wang Q., and Huang W., 2020, Rational improvement of rice yield and cold tolerance by editing the three genes OsPIN5b, GS3, and OsMYB30 with the CRISPR-Cas9 system, Frontiers in Plant Science, 10: 1663. https://doi.org/10.3389/fpls.2019.01663 Zhang A., Liu Y., Wang F., Li T., Chen Z., Kong D., Bi J., Zhang F., Luo X., Wang J., Tang J., Yu X., Liu G., and Luo L., 2019, Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene, Molecular Breeding, 39: 47. https://doi.org/10.1007/s11032-019-0954-y
RkJQdWJsaXNoZXIy MjQ4ODYzNA==