Rice Genomics and Genetics 2025, Vol.16, No.2, 106-115 http://cropscipublisher.com/index.php/rgg 114 Guo L., Gao Z., and Qian Q., 2014, Application of resequencing to rice genomics, functional genomics and evolutionary analysis, Rice, 7: 4-4. https://doi.org/10.1186/s12284-014-0004-7 Hamada K., Hongo K., Suwabe K., Shimizu A., Nagayama T., Abe R., Kikuchi S., Yamamoto N., Fujii T., Yokoyama K., Tsuchida H., Sano K., Mochizuki T., Oki N., Horiuchi Y., Fujita M., Watanabe M., Matsuoka M., Kurata N., and Yano K., 2010, OryzaExpress: an Integrated database of gene expression networks and omics annotations in rice, Plant and Cell Physiology, 52: 220-229. https://doi.org/10.1093/pcp/pcq195 Hong W., Kim Y., Kim E., Kumar A., Moon S., Gho Y., Yoou M., Kim S., and Jung K., 2020, CAFRI-rice: CRISPR applicable functional redundancy inspector to accelerate functional genomics in rice, The Plant Journal, 104(2): 532-545. https://doi.org/10.1111/tpj.14926 Huang X., Lu T., and Han B., 2013, Resequencing rice genomes: an emerging new era of rice genomics, Trends in Genetics, 29(4): 225-232. https://doi.org/10.1016/j.tig.2012.12.001 Jiang Y., Cai Z., Xie W., Long T., Yu H., and Zhang Q., 2012, Rice functional genomics research: progress and implications for crop genetic improvement, Biotechnology Advances, 30(5): 1059-1070. https://doi.org/10.1016/j.biotechadv.2011.08.013 Kim T., and Kim S., 2023, Identification of candidate genes for salt tolerance at the seedling stage using integrated genome-wide association study and transcriptome analysis in rice, Plants, 12(6): 1401. https://doi.org/10.3390/plants12061401 Lenka S., Katiyar A., Chinnusamy V., and Bansal K., 2011, Comparative analysis of drought-responsive transcriptome in Indica rice genotypes with contrasting drought tolerance, Plant Biotechnology Journal, 9(3): 315-327. https://doi.org/10.1111/j.1467-7652.2010.00560.x Li M., Li X., Zhou Z., Wu P., Fang M., Pan X., Lin Q., Luo W., Wu G., and Li H., 2016, Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1in rice using a CRISPR/Cas9 system, Frontiers in Plant Science, 7: 377. https://doi.org/10.3389/fpls.2016.00377 Li Y., Xiao J., Chen L., Huang X., Cheng Z., Han B., Zhang Q., and Wu C., 2018, Rice functional genomics research: past decade and future, Molecular Plant, 11(3): 359-380. https://doi.org/10.1016/j.molp.2018.01.007 Liao S., Qin X., Luo L., Han Y., Wang X., Usman B., Nawaz G., Zhao N., Liu Y., and Li R., 2019, CRISPR/Cas9-induced mutagenesis of Semi-rolled leaf1,2 confers curled leaf phenotype and drought tolerance by influencing protein expression patterns and ROS scavenging in rice (Oryza sativa L.), Agronomy, 9(11): 728. https://doi.org/10.3390/agronomy9110728 Lo S., Fan M., Hsing Y., Chen L., Chen S., Wen I., Liu Y., Chen K., Jiang M., Lin M., Rao M., Yu L., Ho T., and Yu S., 2016, Genetic resources offer efficient tools for rice functional genomics research, Plant, Cell & Environment, 39(5): 998-1013. https://doi.org/10.1111/pce.12632 Lu T., Lu G., Fan D., Zhu C., Li W., Zhao Q., Feng Q., Zhao Y., Guo Y., Li W., Huang X., and Han B., 2010, Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq, Genome Research, 20(9): 1238-1249. https://doi.org/10.1101/gr.106120.110 Moin M., Bakshi A., Saha A., Dutta M., and Kirti, P., 2017, Gain-of-function mutagenesis approaches in rice for functional genomics and improvement of crop productivity, Briefings in Functional Genomics, 16(4): 238-247. https://doi.org/10.1093/bfgp/elw041 Park J., Kim E., Jang Y., Jan R., Farooq M., Ubaidillah M., and Kim K., 2022, Applications of CRISPR/Cas9 as new strategies for short breeding to drought gene in rice, Frontiers in Plant Science, 13: 850441. https://doi.org/10.3389/fpls.2022.850441 Peng H., Wang K., Chen Z., Cao Y., Gao Q., Li Y., Li X., Lu H., Du H., Lu M., Yang X., and Liang C., 2019, MBKbase for rice: an integrated omics knowledgebase for molecular breeding in rice, Nucleic Acids Research, 48: D1085-D1092. https://doi.org/10.1093/nar/gkz921 Qin P., Lu H., Du H., Wang H., Chen W., Chen Z., He Q., Ou S., Zhang H., Li X., Li X., Li Y., Liao Y., Gao Q., Tu B., Yuan H., Ma B., Wang Y., Qian Y., Fan S., Li W., Wang J., He M., Yin J., Li T., Jiang N., Chen X., Liang C., and Li S., 2021, Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations, Cell, 184: 3542-3558. https://doi.org/10.1016/j.cell.2021.04.046 Raza Q., RiazA., Bashir K., and Sabar M., 2020, Reproductive tissues-specific meta-QTLs and candidate genes for development of heat-tolerant rice cultivars, Plant Molecular Biology, 104: 97-112. https://doi.org/10.1007/s11103-020-01027-6 Saijo Y., Hata S., Kyozuka J., Shimamoto K., and Izui K., 2000, Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants, The Plant Journal, 23(3): 319-327. https://doi.org/10.1046/J.1365-313X.2000.00787.X Selamat N., and Nadarajah K., 2021, Meta-analysis of quantitative traits loci (QTL) identified in drought response in rice (Oryza sativa L.), Plants, 10(4): 716. https://doi.org/10.3390/plants10040716
RkJQdWJsaXNoZXIy MjQ4ODYzNA==