RGG_2025v16n1

Rice Genomics and Genetics 2025, Vol.16, No.1, 50-60 http://cropscipublisher.com/index.php/rgg 59 Mao D., Xin Y., Tan Y., Hu X., Bai J., Liu Z., Yu Y., Li L., Peng C., Fan T., Zhu Y., Guo Y., Wang S., Lu D., Xing Y., Yuan L., and Chen C., 2019, Natural variation in the HAN1 gene confers chilling tolerance in rice and allowed adaptation to a temperate climate, Proceedings of the National Academy of Sciences, 116(9): 3494-3501. https://doi.org/10.1073/pnas.1819769116 Ma H.L., 2024, Advanced genetic tools for rice breeding: CRISPR/Cas9 and its role in yield trait improvement, Molecular Plant Breeding, 15(4): 178-186. https://doi.org/10.5376/mpb.2024.15.0018 Nascimento F., Rocha A., Soares J., Mascarenhas M., Ferreira M., Lino L., De Souza Ramos A., Diniz L., Mendes T., Ferreira C., Santos-Serejo J., and Amorim E., 2023, Gene editing for plant resistance to abiotic factors: a systematic study, Plants, 12(2): 305. https://doi.org/10.3390/plants12020305 Nohales M., Liu W., Duffy T., Nozue K., Sawa M., Pruneda-Paz J., Maloof J., Jacobsen S., and Kay S, 2019, Multi-level modulation of light signaling by GIGANTEA regulates both the output and pace of the circadian clock, Developmental Cell, 49(6): 840-851. https://doi.org/10.1016/j.devcel.2019.04.030 Oh D., Ryu J., Jeong H., Moon H., Kim H., Jo E., Kim B., Choi S., and Cho J., 2023, Effect of elevated air temperature on the growth and yield of paddy rice, Agronomy, 13(12): 2887. https://doi.org/10.3390/agronomy13122887 Pierik R., and Ballaré C., 2020, Control of plant growth and defense by photoreceptors: from mechanisms to opportunities in agriculture, Molecular Plant, 14(1): 61-76. https://doi.org/10.1016/j.molp.2020.11.021 Qiu F., Zheng Y., Lin Y., Woldegiorgis S., Xu S., Feng C., Huang G., Shen H., Xu Y., Kabore M., Ai Y., Liu W., and He H., 2023, Integrated ATAC-Seq and RNA-Seq data analysis to reveal OsbZIP14 function in rice in response to heat stress, International Journal of Molecular Sciences, 24(6): 5619. https://doi.org/10.3390/ijms24065619 Rabara R., Msanne J., Basu S., Ferrer M., and Roychoudhury A., 2020, Coping with inclement weather conditions due to high temperature and water deficit in rice: an insight from genetic and biochemical perspectives, Physiologia Plantarum, 172(2): 487-504. https://doi.org/10.1111/ppl.13272 Rasheed A., Seleiman M., Nawaz M., Mahmood,A., Anwar M., Ayub M., Aamer M., El-Esawi M., El-Harty E., Batool M., Hassan M., Wu Z., and Li H., 2021, Agronomic and genetic approaches for enhancing tolerance to heat stress in rice: a study, Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(4): 12501. https://doi.org/10.15835/nbha49412501 Raza Q., R az A., Bashir K., and Sabar M., 2020, Reproductive tissues-specific meta-QTLs and candidate genes for development of heat-tolerant rice cultivars, Plant Molecular Biology, 104: 97-112. https://doi.org/10.1007/s11103-020-01027-6 Ren H., Bao J., Gao Z., Sun D., Zheng S., and Bai J., 2023, How rice adapts to high temperatures, Frontiers in Plant Science, 14: 1137923. https://doi.org/10.3389/fpls.2023.1137923 Sales E., Miedes E., and Marqués L., 2021, Breeding for low temperature germinability in temperate japonica rice varieties: analysis of candidate genes in associated QTLs, Agronomy, 11(11): 2125. https://doi.org/10.3390/agronomy11112125 Sharma E., Borah P., Kaur A., Bhatnagar A., Mohapatra T., Kapoor S., and Khurana J., 2021, A comprehensive transcriptome analysis of contrasting rice cultivars highlights the role of auxin and ABA responsive genes in heat stress response, Genomics, 113(3): 1247-1261. https://doi.org/10.1016/j.ygeno.2021.03.007 Sheela H., Vennapusa A., Melmaiee K., Prasad T., Reddy C., Krishi G., Gkvk B., Roychowdhury R., Center V., Tan C., Sheri V., and Parchuri P., 2023, Pyramiding of transcription factor, PgHSF4, and stress-responsive genes of p68, Pg47, and PsAKR1 impart multiple abiotic stress tolerance in rice (Oryza sativa L.), Frontiers in Plant Science, 14: 1233248. https://doi.org/10.3389/fpls.2023.1233248 Su L., Shan J., Gao J., and Lin H., 2016, OsHAL3, a blue light-responsive protein, interacts with the floral regulator hd1 to activate flowering in rice, Molecular Plant, 9(2): 233-244. https://doi.org/10.1016/j.molp.2015.10.009 Ullah M., Abdullah-Zawawi M., Zainal-Abidin R., Sukiran N., Uddin M., and Zainal Z., 2022, A study of integrative omic approaches for understanding rice salt response mechanisms, Plants, 11(11): 1430. https://doi.org/10.3390/plants11111430 Yun K., Park M., Mohanty B., Herath V., Xu F., Mauleon R., Wijaya E., Bajic V., Bruskiewich R., and De Los Reyes B., 2010, Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress, BMC Plant Biology, 10: 16. https://doi.org/10.1186/1471-2229-10-16 Zafar S., Hameed A., Ashraf M., Khan A., Qamar Z., Li X., and Siddique K., 2020, Agronomic, physiological and molecular characterisation of rice mutants revealed the key role of reactive oxygen species and catalase in high-temperature stress tolerance, Functional Plant Biology, 47(5): 440-453. https://doi.org/10.1071/fp19246

RkJQdWJsaXNoZXIy MjQ4ODYzNA==